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a  b  s  t  r  a  c  t

The  linear  and  angular  compliance  models  for a class  of  statically  indeterminate  symmetric  (SIS)  flexure
structures  are  established  in  this  paper.  Compared  with  a single  flexure  hinge,  the  SIS  flexure  structure
is  free  of parasitic  motions  when  a force  or moment  is  applied.  Thus,  it can  be  treated  as  an  ideal  pris-
matic  or  revolute  joint  according  to its  load  status.  However,  due  to  the  inevitable  axial  tension,  the
load–deflection  relationship  of  the  SIS  structure  is nonlinear.  Computational  analyses  are  performed  to
investigate  the  influence  of  the  axial  tension.  Computational  results  reveal  that  within  small  deflection
range,  the  nonlinearity  is  very  small  and  the  axial  tension  can  be  neglected.  In  micro/nano  scale  appli-
cations,  the motion  range  can  be regarded  as  infinitesimal  when  compared  with  the  dimension  of  the
overall  structure.  Therefore,  the  influence  of the  axial  tension  would  become  negligible,  and  the analytical
compliance  models  of  the  SIS  structure  are  established  using  the  integration  of  flexible  beam.  Compared
with computational  results,  large  modeling  errors  occur  in the  analytical  models  for  the  SIS structure
with  thick  and  short  flexure  hinges.  Based  on the  observations  from  the  error  analyses,  an  error  model
is  established  and  incorporated  into  the  analytical  compliance  models  to function  as an  error  compen-
sator.  Utilizing  the  error compensator,  the  modeling  accuracy  of  the  compliance  models  can  be  improved,
which  is validated  by  the experimental  results  on  a flexure-based  mechanism.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Flexure hinges have been widely used in the engineering appli-
cations where ultra precision positioning is of central importance
[1,2]. Different from conventional mechanisms, flexure hinges
transform motions based on their elastic deformations, which are
free of friction, wear, backlash and lubrication. Therefore, flexure
structures are capable of achieving high precision motions. The
compliance/stiffness models for a single flexure hinge have been
extensively investigated. Through the literature review, many dif-
ferent methods have been proposed, such as the integration of
beam theory [3,4], Castigliano’s second theorem [5–7], inverse con-
formal mapping [8],  Pseudo Rigid Body (PRB) method [9],  and
empirical equations derived from finite element results [10–12].
The differences between these models have also been investi-
gated in various situations [13]. In the mechanical design of flexure
hinges, different types have been investigated, such as leaf-type
[14], corner-fileted [15], V-shaped [16], conic sections with circular,
elliptical, parabolic, and hyperbolic profile [5,17–21]. More com-
plex types have also been proposed, such as the quadratic rational
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Bezier curves based unified geometric model proposed by Vallance
el al. [22], and the three-segment flexure hinge proposed in [23].

Generally, a flexure hinge can be modeled as a revolute joint
in micro/nano scale applications, and its angular deflection about Z
axis is the primary motion. However, the flexure hinge suffers from
cross-axis couplings. For a planar flexure hinge, there are strong
couplings between the rotational and translational motions. Fur-
thermore, the rotation center of a flexure hinge drifts whenever the
hinge works, resulting in motion errors. In practice, multiple flex-
ure hinges can be combined to form certain compliant structures
to obtain decoupled characteristics [24,25]. Illustrated in Fig. 1(a),
the parallelogram [26–29] has been widely used as the prismatic
joint because it is capable of eliminating the rotational motions.
However, parasitic motions in the transverse direction still exist
and the asymmetric configuration leads to poor thermal perfor-
mance. The double parallelogram [30,31],  shown in Fig. 1(b), avoids
parasitic motions in the parallelogram by introducing an interme-
diate linkage. However, the asymmetric configuration remains and
the equivalent stiffness is reduced to half that of the parallelogram
with identical parameters. Illustrated in Fig. 1(c), the symmetric
parallelogram [32] is an equivalent structure of the double paral-
lelogram, which retains the same stiffness. Due to the symmetry,
this structure significantly reduces the thermally induced deforma-
tions. However, the off-axis stiffness is low and it is very weak in the
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Fig. 1. Typical decoupled flexure structures. (Double headed arrows: working direc-
tions.)

transverse direction. Fig. 1(d) shows the diagram of an over-
constrained symmetric parallelogram [25,33]. As both ends are
clamped, the stiffness in the working and transverse direc-
tions can be significantly improved. However, the load-deflection
relationship is nonlinear due to the axial tension. All the
parallelogram-based structures shown in Fig. 1 are designated to
function as prismatic joints, and thus they cannot be used in appli-
cations where rotations are required.

In the compliance/stiffness modeling of the flexure-based
mechanism, the PRB method [9] and the Castigliano’s second theo-
rem [5,6] are the most commonly used methodologies. The PRB
method provides an effective and simple way to estimate the
mechanism’s stiffness. It is particularly attractive in complex struc-
tures. However, the modeling error is inevitable if the axial and
transverse deformations are not taken into consideration [34]. The
Castigliano’s second theorem derives the compliance of a given
structure based on the stain energy. The deflection of a point caused
by a given load is the partial derivative of the total strain energy
with respect to the applied load.

As shown in Fig. 2, a class of statically indeterminate symmet-
ric (SIS) flexure structures will be extensively investigated in this
paper. In Fig. 2(a), a fundamental SIS flexure structure consists of
one central linkage and two arms connected by four identical flex-
ure hinges. The arm length is denoted as l1 and the central linkage
length is denoted as 2l2. The geometric parameters of the flexure
hinge are defined in Fig. 3(a). Different from the aforementioned
parallelogram-based structures, the SIS structure is symmetric
about its center and both ends are clamped. As a result, it is more
stable and the thermally induced deformations can be attenuated.
Depending on the load status described in Fig. 2(a), the SIS structure
exhibits distinct characteristics. Fig. 2(b) shows the deformation of

Fig. 2. Schematic diagram of the SIS flexure structure and its working principle.

the SIS structure when a moment about Z axis (Mz) is applied. Being
symmetric, the rotation center does not drift. Therefore, the cen-
tral linkage will rotate about the center point O, acting as an ideal
revolute joint. In Fig. 2(c), if a force of Fy is applied in Y axis, the
central linkage will translate in Y axis. In this case, the SIS struc-
ture can be regarded as half of the over-constrained symmetric
parallelogram as shown in Fig. 1(d). The symmetry of the struc-
ture significantly attenuates the parasitic motions in X axis and the
parasitic rotations about Z axis. When a force of Fx is applied in
X axis, the central linkage will translate in X axis. Generally, the
linear stiffness in X axis is much higher than its linear stiffness in
Y axis. Therefore, in applications, the SIS structure can always be
treated as rigid in X axis. Compared with the symmetric parallelo-
gram in Fig. 1(c), the SIS structure has higher stability and higher
off-axis stiffness, and in fact exhibits high degree of robustness to
the transverse disturbance. Compared with the over-constrained
symmetric parallelogram in Fig. 1(d), the SIS structure can also be
used as a revolute joint. Therefore, the SIS structure in Fig. 2(a) is
widely applicable in precision applications requiring high precision
accuracy.

The SIS structure is not without disadvantages. By introduc-
ing the static indeterminacy, the axial tension exists whenever the
SIS structure operates. In general, the load–deflection relationship
of the SIS structure is nonlinear. However, through computational
analyses in Section 3, it is demonstrated that within small deflec-
tion range, the nonlinearity is small enough and the influence
of the axial tension can be neglected. Through literature review
it is found that for such over-constrained flexure structures, the
axial tension has always been neglected [6,25,35] as in micro/nano
scale applications, the deflection range can always be regarded
as infinitesimal. Subsequently, the compliance models of the SIS
structure are derived from the integration of flexible beam based
on the assumption that only the flexure hinges are flexible and
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