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a  b  s  t  r  a  c  t

Ultra-precision  manufacturing  (UPM)  machines  are  used  to  fabricate  and  measure  complex  parts
having  micrometer-level  features  and  nanometer-level  tolerances/surface  finishes.  Consequently,  low-
frequency  residual  vibrations  that  occur  during  the motion  of  the  machines’  axes  must  be  mitigated.  A
long-standing  rule  of  thumb  in vibration  isolation  system  design  is  to locate  the  isolators  in  such  a way
that  all  vibration  modes  are  decoupled.  This paper  uses  the  2D  dynamics  of a passively  isolated  system
to  show  that  coupling  the  vibration  modes  of the  isolated  system  by  altering  the  location  of  the  isolators
provides  conditions  which  allow  for the  drastic  reduction  of residual  vibrations.  An  objective  function
which  minimizes  residual  vibration  energy  is  defined.  Perturbation  analyses  of the  objective  function
reveal  that  the  recommended  practice  of decoupling  the  vibration  modes  more  often  than  not  leads  to
sub-optimal  results  in  terms  of residual  vibration  reduction.  The  analyses  also  provide  guidelines  for  cor-
rectly  locating  the  isolators  so  as to  reduce  residual  vibrations.  Simulations  and  experiments  conducted
on  a passively  isolated  ultra-precision  machine  tool  are  used  to  validate  the findings  of  the paper;  a 5-
fold reduction  of the dominant  residual  vibrations  of the machine  tool  is  achieved  without  sacrificing
vibration  isolation  quality  (i.e.,  transmissibility).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Ultra-precision manufacturing (UPM) machines are designed
to fabricate and measure complex parts having micrometer-level
features and nanometer-level tolerances/surface finishes [1].  They
enable the production of micro devices that are largely responsible
for the advances in the electronics, biomedical, communications
and other cutting-edge industries. Examples of UPM machines
include ultra-precision machine tools, wafer steppers and micro
CMMs,  to name a few.

Due to stringent accuracy requirements, UPM machines must
be properly isolated from floor vibrations. Passive isolators provide
an energy-neutral, reliable and cost-effective means for vibration
isolation [2–4]. A major problem with the soft mounting provided
by passive vibration isolators is that it causes undesirable residual
vibrations. Typically, residual vibrations occur in the form of low-
frequency rocking motions of the isolated machine due to internal
and external excitations – most prominent of which are the inertial
reactions induced by moving machine components [2,3,5].  Residual
vibrations must be minimized because they degrade the achievable
accuracy and speed of UPM machines [2–8].
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A long-standing rule of thumb in isolation system design,
widely promoted in academic literature and industrial practice, is
to decouple all vibration modes by aligning the isolator mount-
ing locations with the center of gravity of the isolated machine
[4,9–13].  There are two important reasons for this rule. First, decou-
pling ensures that vertical ground motions are not transmitted to
the typically more-sensitive horizontal axes of the machine. This
is because, generally, vertical ground motions are about twice as
severe as horizontal ground motions [3,4]. Secondly, decoupling
ensures that two or more resonance peaks are not created in the
transmissibility response of the machine, thereby reducing the rate
of attenuation after the first resonance [12]. Rivin [3] however
points out that the proper selection of the isolator mounting points
as a means of reducing residual vibrations is an issue often ignored
by designers. DeBra [2] makes a similar observation based on an
ultra-precision diamond turning machine whose residual vibra-
tions were seen to reduce after its center of gravity was  raised
relative to its isolator support point. However, neither DeBra [2] nor
Rivin [3] provide analytical explanations for the effect of isolator
locations in reducing residual vibrations.

This paper demonstrates analytically that coupling the vibration
modes of passively isolated machines, by altering the location of the
isolators, provides conditions that allow for the drastic reduction
of residual vibrations compared to the decoupled system. Further-
more, it proffers analysis-based guidelines for selecting the location
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Fig. 1. Planar model of isolated machine.

of the isolators such that residual vibrations are reduced using
mode coupling. The outline of the paper is as follows: In Section
2, the effects of isolator location on the planar (2D) dynamics of
a simple isolated system are studied using a mathematical model.
An objective function which minimizes residual vibration energy
is then defined in Section 3 and used, in conjunction with a pertur-
bation method, to analytically demonstrate the sub-optimality of
decoupling vibration modes, in most situations. Moreover, practi-
cal design guidelines for judiciously placing vibration isolators to
achieve residual vibration reduction are deduced. Finally, in Section
4, simulations and experiments are conducted on an ultra-precision
five-axis machine tool, followed by discussions and conclusions.

2. Modeling and analysis

2.1. Modeling

Fig. 1 shows a 2D model of an isolated machine. m and I are
respectively the mass and centroidal moment of inertia of the
machine base about the x-axis. ky and kz are the combined stiff-
ness of the isolators in the y and z directions, respectively. b is the
half-span of the isolators while h is the vertical height of the isola-
tor mounting point, measured from the center of gravity (CG) of the
base. The vibrations of the machine base are assumed to occur only
in the y–z plane. Such planar analyses can be applied, for instance,
when the machine’s structure is symmetrical in the x-direction. In
a general sense, the dynamics of passive (typically pneumatic) iso-
lators is nonlinear [14,15]. However, for small vibratory motions,
linear models are adequate [14].

Assuming, for theoretical convenience, that the system in Fig. 1
is proportionally damped, its equation of motion is given by

Mü + Ku = 0 (1)

M, K and u are respectively the mass matrix, stiffness matrix and
vector of displacements of the system. They are given by

M =

⎡
⎣m 0 0

0 m 0

0 0 I

⎤
⎦ ; K =

⎡
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ky 0 −kyh

0 kz 0

−kyh 0 k� + kyh2

⎤
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⎩

y

z

�x

⎫⎬
⎭ (2)

where k� = b2kz. Note that in Eq. (1),  the damping of the system is
not explicitly considered because a proportionally damped system
can first be analyzed as an undamped system after which damping
can be directly introduced into the modes [16].

As can be inferred from Eq. (2),  only the dynamics in the y and
�x directions are coupled as a result of h. Since the main purpose of
this paper is to study the effects of h on the dynamics of the isolated
system, we focus on the coupled subsystem,

M =
[

m 0

0 I

]
; K =

[
ky −kyh

−kyh k� + kyh2

]
; u =

{
y

�x

}
(3)

Eq. (3) gives rise to two vibration modes, described by the coordi-
nates y and �x, whose behaviors as h is varied need to be analyzed.

Fig. 2. Mode shape of isolated machine.

2.2. Analysis

Fig. 2 shows the shape of a rocking vibration mode i (where
i = 1, 2) of the isolated machine about its node Ni. The node rep-
resents the point about which the isolated system rotates when
vibrating in a particular mode. Fy and Fz are the inertial forces due
to masses moving on the isolated system in the y and z directions,
respectively. hF and r respectively indicate the perpendicular dis-
tances of Fy and Fz from the CG. hNi is the height of Ni relative to the
CG. As observed from the figure, the residual (rocking) vibrations
of the isolated machine can be caused by the moments created by
Fy or Fz about any node Ni of the isolated system. The influence of
Fy depends on its moment arm hF − hNi about Ni, and can be rep-
resented by the frequency response function (FRF) between Fy and
the angular acceleration �̈x of the base; i.e.

Hy(ω) = −ω2�x

Fy
=

2∑
i=1

hF − hNi

Iqi

ω2

−ω2 + 2jω�iωni + ω2
ni

(4)

Similarly, the residual vibrations caused by Fz can be described by
the FRF

Hz(ω) = −ω2�x

Fz
=

2∑
i=1

r

Iqi

ω2

−ω2 + 2jω�iωni + ω2
ni

(5)

In Eqs. (4) and (5),  ωni and Iqi respectively denote the natural
frequency and modal inertia of each vibration mode i, while ω rep-
resents the excitation frequencies; �i is the modal damping added
to account for the proportional damping of the isolated system
which was  ignored in Eq. (1) and j is the unit imaginary number.
To understand how Hy and Hz are affected by mode coupling, the
variation of ωni, hNi and Iqi as functions of h is studied. Ideally, �i
would also change as a function of h but we  assume that the pro-
portional damping is defined such that the modal damping ratios
remain constant as h is varied.

To facilitate the analysis, a non-dimensional natural frequency
for mode i (i.e., ω̃ni) is defined as

ω̃ni � ωni√
ky/m

=

√
1 + ε2 + h̃2 ∓

√
(1 + ε2 + h̃2)

2 − 4ε2

2
(6)

where h̃ is the non-dimensional height corresponding to h and ε is
a non-dimensional variable defined as

h̃ � h

�
; ε �

√
k�m

kyI
; � �

√
I

m
(7)

Similarly, h̃Ni and Ĩqi, the non-dimensional node height and
modal inertia are defined as

h̃Ni � hNi

�
= 1

h̃
(ε2 + h̃2 − ω̃2

ni); Ĩqi �
Iqi

I
= h̃2

Ni + 1 (8)
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