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Abstract

A failure criterion based on energy balance approach is introduced for the laminated glass panel subjected to blast
loading. Based on this failure criterion, a damage factor is developed to assess the failure of the laminated glass panel. If
the damage factor is less than one, the plate is safe otherwise unsafe. Trigonometric function is employed to express the
transverse deflection and the Airy�s stress function in von Karman�s large deflection equations of a thin plate. The non-
linear ordinary differential equation of motion obtained using the Galerkin method is solved using Runge–Kutta
method. The predicted results indicate that the breakages of the laminated glass may be caused by the negative phase
of the blast load if the positive phase blast load is not violent enough to cause failure. Also, the size of glass shards the
laminated glass plies breaks in to is predicted using the surface energy based failure model.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is estimated that the majority of nonfatal
injuries from bomb blasts result from airborne
glass fragments from architectural glazing [1].
The use of laminated glass has been shown to mit-
igate this hazard.

The problem of window glass subjected to bomb
explosion generally involves large deflections. The

dynamic response of a monolithic glass plate sub-
jected to a random fluctuating wind pressure was
studied in Ref. [2]. They used von Karman nonlin-
ear equations and solved it by a dynamic finite dif-
ference technique. The effects of negative phase of
the blast load on the probability of monolithic glass
panel failure was presented in [3] simplifying the
plate to a linear spring-mass single-degree-of-free-
dom system. The damage probability of laminated
glass plate subjected to blast loading was calculated
in [4] using a two-parameter Weibull distribution.
The effect of negative phase of blast loading on
the dynamic responses of laminated glass panel
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subjected to blast loading was studied in [5] based
on the closed-form solution from classical small
deflection thin plate theory.

In this paper, a geometric nonlinear analytical
solution of laminated glass panel subjected to blast
loading is presented. Trigonometric functions are
employed to express the transverse deflection and
Airy�s stress function in von Karman�s large de-
flection equations of a thin plate. The Galerkin
method is used to obtain the nonlinear ordinary
differential equation of motion and then it is solved
using Runge–Kutta method. A failure model based
on Griffith energy balance is developed for the lam-
inated glass panel subjected to a blast loading. The
size of glass shards scattered from laminated glass
plies is predicted using this model. The results of
the failure model are compared with the available
experimental results for the laminated glass sub-
jected to blast loading.

2. The damage model

When a system is subjected to a load, it stores
certain amount elastic strain energy. Based on
the principle of the first law of thermodynamics,
such a system will be in a nonequilibrium state.
To return to an equilibrium state, the system has
to release the stored energy. One such mechanism
for energy release is the formation of a new crack
or the growth of an existing crack. In such a pro-
cess, the stored strain energy is conversed to sur-
face energy [6,7]. Based on the Griffith energy
balance criterion [8], the total potential energy of
the system, U, may be written as [9]

U ¼ U 0 � U a þ U c; ð1Þ

where U0 is elastic energy of the uncracked plate,
Ua is decrease in the elastic energy caused by intro-
duction of a crack in the plate, Uc is increase in the
surface energy caused by the formation of the
crack surface. Since Ua = Ur = 0 before the forma-
tion of a crack, U = U0. Therefore, Eq. (1), during
the formation of a crack, will reduce to

U c ¼ U a. ð2Þ
Eq. (2) shows that the surface energy needed to

form crack surface equals to the elastic energy pro-

vided by the tensile stress in a glass ply. In the fol-
lowing sections, Eq. (2) is first applied to calculate
the critical size of fragments that the laminated
glass plate will break into under a blast. Then, a
failure criterion will be proposed for a laminated
glass panel subjected to blast load using Eq. (2).

2.1. Critical glass fragment size

Consider a fictional fragment with area DA =
Da · Db bound by cracks on all sides is shown in
Fig. 1(a) located in the tensile side of a laminated
glass panel. Assuming the fragment is formed after
the glass ply shattered by tensile stresses. The free-
body diagram of this fragment subjected to the
tensile stresses is shown in Fig. 1(b). The surface
energy is given by

U c ¼ 2ðDaþ DbÞhgcs; ð3Þ
in which, cs is the surface energy of glass and hg is
the thickness of glass. cs = 3.9 J/m2 was reported
in Ref. [6] for soda-lime glass in static state. The
strain energy of the isolated fragment is given by

U a ¼
1
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where hp is the thickness of PVB interlayer Eg and
mg are the elastic modulus and the Poisson�s ratio
of glass. Integrating Eq. (4) using the stresses to
be obtained later and then equating it to Eq. (3),
the transcendental function is obtained as

f ðx; y; t;Da;DbÞ ¼ 0. ð5Þ
It is postulated that the fragment shape and size

are some way related to plate geometry. To sim-
plify the calculations, it is assumed that

Db
Da

¼ b
a
¼ r; ð6Þ

Eq. (5) now is reduces to

f ðx; y; t;DaÞ ¼ 0. ð7Þ
Eq. (7) cannot be solved explicitly. Therefore, an
iterative method is used to solve for Da for a given
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