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This study focuses on heat conduction in unidimensional lattices also known as micro-
structured rods. The lattice thermal properties can be representative of concentrated 
thermal interface phases in one-dimensional segmented rods. The exact solution of the 
linear time-dependent spatial difference equation associated with the lattice problem is 
presented for some given initial and boundary conditions. This exact solution is compared 
to the quasicontinuum approximation built by continualization of the lattice equations. 
A rational-based asymptotic expansion of the pseudo-differential problem leads to an 
equivalent nonlocal-type Fourier’s law. The differential nonlocal Fourier’s law is analysed 
with respect to thermodynamic models available in the literature, such as the Guyer–
Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with 
respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency 
of the nonlocal model to capture the lattice evolution problem, as compared to the 
local model. The propagation of error with the nonlocal model is much slower than 
that in its local counterpart. A two-dimensional thermal lattice is also considered and 
approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and 
continualized heat equations both approximate efficiently the two-dimensional thermal 
lattice response. These extended continuous heat models are shown to be good candidates 
for approximating the heat transfer behaviour of microstructured rods or membranes.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper deals with a nonlocal generalization of the heat equation that can be based on lattice arguments. Such non-
local theories may be useful to capture the scale effects of microstructured solids, when the discreteness at a subscale may 
play a predominant role at a larger scale. Such scale effects have been experimentally or numerically (based on molecular 
dynamics simulations) observed, for small scale structures, where size-dependent thermo-mechanical behaviour is noticed. 
Although the paper is mainly focused on thermal diffusion, fluid infiltration in porous media or electrical conductivity may 
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be considered as alternative basic diffusion problems [1]. Nonlocal thermomechanics has been developed since the 1960s 
based on well-founded thermodynamic arguments [2]. Eringen and Kim [3] or Eringen [4] calibrated the nonlocal elas-
ticity kernel (uncoupled mechanical problem) from lattice mechanics. Lattice mechanics is typically governed by discrete 
equations, whereas continuum models are known to be better suited for engineering applications, with some more math-
ematical available framework. There is a need to develop some continuous models which possess some information of the 
lattice ones. In that spirit, Collins [5] introduced the concept of quasicontinuum to representing a transition medium be-
tween the discrete lattice and the asymptotic local continuum. Collins [5] defined this quasicontinuum for a mechanical 
lattice, with specific application to the soliton phenomenon (see also [6,7]). Rosenau [8] obtained a nonlocal wave equation 
by continualization of the discrete wave equation. This nonlocal wave equation can be shown to be cast as a differential-
based nonlocal model [4], also called a stress-gradient nonlocal model. More recently, the source of nonlocality has been 
investigated, especially with respect to the inherent microstructure, and in particular for uncoupled mechanical problems 
(see, recently, [9–11] for nonlocal elasticity problems). Challamel et al. [12] also showed the key role of different microstruc-
tures, namely a concentrated or some distributed microstructures. Nonlocal mechanics may be used for characterizing the 
behaviour of the quasicontinuum. To the authors’ knowledge, this methodology has not yet been applied to the thermal 
analysis of the lattice, so the main aim of this paper is to fill this gap.

It has been demonstrated that the nonlocal kernel for elasticity problems may be related to the discreteness of the 
material at a fine scale, using a nonlocal differential model introduced by Eringen [4]:

σ − l2cσ
′′ = Eε with ε = u′ (1)

where σ is the uniaxial stress, ε is the uniaxial strain, u is the axial displacement, E is the Young modulus, and lc is 
a characteristic length which accounts for the specific lattice effect of the equivalent quasicontinuum. For axial vibrations 
problems, Challamel et al. [11] showed that the length scale of the nonlocal model can be calibrated from the lattice spacing 
a using:

l2c = a2

12
(2)

This value is slightly different from the one calibrated by Eringen [4] by comparing the wave dispersive properties of the 
nonlocal model with the lattice one, also referred to as the Born–Kármán lattice model.

In this paper, we adopt the same methodology used and applied in a one-dimensional problem of thermal diffusion evo-
lution. Nonlocal heat equations have been recently considered using space-fractional derivative operators instead of integer 
derivative ones [13–17]. In these approaches, the attenuation functions can be introduced by fractional derivative theory, 
leading to equivalent fractional power law decaying functions. Atanackovic et al. [13] considered a generalized fractional heat 
equation (also called fractional Cattaneo-type equation) (from the initial work of Cattaneo [18] – see also [19]) with both 
space- and time-fractional operators, and presented some numerical and analytical solutions. Some more general results in-
cluding existence and uniqueness properties of Cattaneo-type space–time fractional heat equation (and nonlocal wave-type 
equations) are available in the books of Atanackovic et al. [20,21]. Michelitsch et al. [14] studied nonlocal wave propagation 
and nonlocal diffusion processes for self-similar harmonic interactions media using fractional derivatives. Sapora et al. [15]
investigated a spatially nonlocal heat equation involving space-fractional derivative operators. Michelitsch et al. [14], Tarasov 
[16] or Zingales [17] built some space-fractional derivative nonlocal heat equations from a lattice model. Michelitsch et 
al. [14] or Tarasov [16] considered long-range lattice interactions (nearest-neighbour ones, but also interactions including 
some other neighbouring) for the physical justification of fractionality, whereas Zingales [17] investigated only nearest-
neighbour interactions with power-law lattice non-uniformity. Deseri and Zingales [22] considered a time-fractional Darcy 
equation (diffusion equation), which can be also considered as a kind of generalized Cattaneo-type equation. Yu et al. [23]
coupled Eringen’s nonlocal elasticity (integer order spatial differential model) with time-fractional order derivative for the 
heat conduction. Challamel et al. [9] analytically studied wave propagation in a nonlocal fractional differential-based model, 
highlighting the possible link between fractional nonlocality and Eringen’s differential-based model (see [4] for Eringen’s 
differential model applied to elasticity). Peridynamic heat transfer modelling (which makes use of nonlocal type diffusion 
equations) has been investigated by Oterkus et al. [24]. Recently, Zhan et al. [25] numerically noticed some length-dependent 
thermal conductivity in a one-dimensional carbon nanomaterial – diamond nanothread (DNT) – based on non-equilibrium 
molecular dynamics simulations.

In this paper, we consider an Eringen-type differential model for the nonlocal one-dimensional (and later two-
dimensional) generalization of Fourier’s law:

q − l2c q′′ = −λT ′ (3)

where q is the heat flux, T is the temperature, λ is thermal conductivity, and lc is a characteristic length which contains the 
microstructure information related to the discreteness of the material. The meaning of this nonlocal parameter is discussed 
further below. In Eq. (3), we can recognize an Eringen-type nonlocal differential model [4], where the heat flux acts as the 
stress and the temperature may be associated with the displacement in the analogous case of nonlocal elasticity. Eq. (3)
can also be classified as a Guyer–Krumhansl-type equation [26–29], restricted to the nonlocal space contribution as recently 
highlighted by Sellitto et al. [30], Jou et al. [31] or Jou et al. [32]. The additional nonlocal terms may appear in the kinetic 
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