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We numerically compute the axisymmetric Taylor–Couette flow in the presence of axially 
periodic magnetic fields, with Hartmann numbers up to Ha2 = 107. The geometry of 
the field singles out special field lines on which Shercliff layers form. These are simple 
shear layers for insulating boundaries, versus super-rotating or counter-rotating layers 
for conducting boundaries. Some field configurations have previously studied spherical 
analogs, but fundamentally new configurations also exist, having no spherical analogs. 
Finally, we explore the influence of azimuthal fields Bφ ∼ r−1êφ on these layers, and 
show that the flow is suppressed for conducting boundaries, but enhanced for insulating 
boundaries.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous modéliserons l’écoulement axisymétrique de Taylor–Couette en présence d’un champ 
magnétique axialement périodique, avec un nombre de Hartmann jusqu’à Ha2 = 107. La 
géometrie du champ montre des lignes de champ sous forme de couche de Shercliff. On 
observe des couches de cisaillement lorsque les frontières sont isolantes, tandis que la 
rotation est excessive ou inversée pour les frontières conductrices. Certaines configurations 
de champs sont similaires à celles vues sous forme sphérique ; cependant, de nouvelles 
configurations existent. Enfin, nous découvrirons l’influence de champs azimutaux (Bφ ∼
r−1êφ) sur ces couches et nous montrerons que l’écoulement diminue avec des bords 
conducteurs, alors qu’il s’accentue pour des frontières isolantes.
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1. Introduction

Shercliff layers are free shear layers that can occur in the flow of an electrically conducting fluid when a sufficiently 
strong magnetic field is externally imposed [1]. They arise due to the strongly anisotropic nature of the Lorentz force, 
consisting of a tension along the magnetic field lines. The details of how the spatial structure of the imposed field overlaps 
with the geometry of the container can then single out special field lines on which Shercliff layers form.

For example, suppose we consider spherical Couette flow, the flow induced in a spherical shell where the inner 
sphere rotates and the outer one is fixed. Consider further two possible choices of magnetic fields to impose, a dipole 
Bd = 2σ−3 cos θ êσ + σ−3 sin θ êθ and a uniform axial field Ba = êz = cos θ êσ − sin θ êθ , where (σ , θ, φ) are standard spher-
ical coordinates, and (z, r, φ) cylindrical coordinates. For the dipole field, there will be some field lines that link only to the 
inner sphere, and others that connect the two spheres. Similarly, for the axial field, there will be some field lines that link 
only to the outer sphere, and others that connect the two spheres. The tension in the field lines then ensures that any field 
lines linked to one boundary only are completely locked to that boundary, with the fluid either co-rotating with the inner 
sphere, or stationary together with the outer sphere. It is only on field lines that connect to both boundaries that the fluid 
is faced with conflicting conditions at the two ends of the line, and resolves this conflict by rotating at a rate intermediate 
between the two end values.

The entire domain is therefore naturally divided up into different regions, depending on how the field lines connect 
to the boundaries, with the angular velocity changing abruptly across those field lines separating different regions [2,3]. 
Furthermore, it is clear that there is nothing special about either the spherical geometry or these two particular fields. As 
long as both the container and the imposed field are axisymmetric, the same considerations will apply, and will always 
result in Shercliff layers forming on these special field lines where the linkage to the boundaries switches from one type to 
another. The thickness of these layers scales as Ha−1/2, where the Hartmann number Ha is a measure of the strength of the 
imposed field [4].

Another intriguing result is the influence of the electromagnetic boundary conditions. The conclusion above, i.e. that 
Shercliff layers are simply shear layers on which the angular velocity switches to something intermediate between 0 at the 
outer boundary and 1 at the inner boundary, is valid only if both boundaries are insulating. If instead the inner sphere is 
conducting, a dipole field yields a so-called super-rotation, where the fluid within the Shercliff layer rotates faster than the 
inner sphere [2]. Alternatively, if the outer sphere is conducting, an axial field yields a counter-rotation, where the fluid 
within the Shercliff layer rotates in the opposite direction to the inner sphere [5]. In both of these cases, the degree of 
super-rotation or counter-rotation is around 20–30% of the inner sphere’s rotation rate, independent of Ha (for sufficiently 
large values). Even more unexpected results are obtained if both boundaries are taken to be conducting; in this case, the 
degree of ‘anomalous’ rotation appears to increase indefinitely as Ha is increased in a numerical computation [5,6]. Various 
asymptotic analyses of this problem confirm that the anomalous rotation should be O (1) if only one boundary is conducting, 
but O (Ha1/2) if both boundaries are conducting [7–10].

Motivated by these counter-intuitive results, [11] performed a systematic investigation of linear combinations of dipole 
and axial fields, and showed that it is even possible to obtain both super-rotation and counter-rotation simultaneously. 
One finds easily enough that combinations of these two basic ingredients, dipole and axial, are sufficient to create all field 
line topologies that are possible in a spherical shell geometry. The purpose of this paper is to show that other topologies 
are possible in cylindrical geometry, and to numerically explore what happens in those cases. For example, we will show 
that it is possible to construct a field having a single field line that is tangent to both the inner and outer cylinders, with 
the tangency at the outer cylinder then suggesting a super-rotation, but the tangency at the inner cylinder suggesting a 
counter-rotation. So what does happen in that case? We will further explore what happens when azimuthal fields of the 
form r−1êφ are added, which also have no natural analog in spherical geometry.

Finally, it is worth noting that there have been several liquid metal experiments related to some of the topics considered 
here. These include spherical Couette flow in both dipole [12–14] and axial [15,16] fields, cylindrical Taylor–Couette flow 
in an axial field [17,18], and even electromagnetically driven flows [19,20]. However, inertia (finite Reynolds number) plays 
an important role in most of these results, unlike in the ‘pure’ Shercliff layer problem considered here. See also [21–27]
for numerical results related to some of these experiments, as well as [28] for a general review of magnetohydrodynamic 
Couette flows.

2. Equations

We consider a cylindrical Taylor–Couette geometry with nondimensional radii ri = 1 and ro = 2. Periodicity is imposed 
in z, with a wavelength z0 = 4. The precise choice z0 = 4 is not crucial, with a broad range of O (1) values yielding similar 
Shercliff layer structures. (Taking z0 � O (1) could well lead to different solutions though.)

In the inductionless limit, the nondimensional Navier–Stokes and magnetic induction equations are

∂U

∂t
= −∇p + ∇2U − Re U · ∇U + Ha2(∇ × b) × B0 (1)

∇2b = −∇ × (U × B0) (2)
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