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This Note lays out the specialization of the two-potential constitutive framework — also 
known as the “generalized standard materials” framework — to rubber viscoelasticity. Inter 
alia, it is shown that a number of popular rubber viscoelasticity formulations, introduced 
over the years following different approaches, are special cases of this framework. As a first 
application of practical relevance, the framework is utilized to put forth a new objective 
and thermodynamically consistent rubber viscoelastic model for incompressible isotropic 
elastomers. The model accounts for the non-Gaussian elasticity of elastomers, as well 
as for the deformation-enhanced shear thinning of their viscous dissipation governed by 
reptation dynamics. The descriptive and predictive capabilities of the model are illustrated 
via comparisons with experimental data available from the literature for two commercially 
significant elastomers.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

While within certain ranges of loading conditions elastomers may be safely idealized as elastic, they are intrinsically 
viscoelastic. In the literature, there are, in essence, two approaches that have been adopted to model their viscoelastic be-
havior at a continuum level. The first approach is grounded on hereditary integral representations of the stress (strain) in 
terms of the strain (stress) (see, e.g., [1–3]), whereas the second one is based on the employment of internal variables 
to describe their viscous dissipation (see, e.g., [4–9]). Because of its superior tractability, the internal-variables approach 
has proved overwhelmingly more popular. Now, within the theoretical description of dissipative (not just viscoelastic) phe-
nomena based on internal variables [10], the so-called two-potential framework [11–14] — also known as the “generalized 
standard materials” framework — has emerged as a framework of choice to construct thermodynamically consistent models 
for a wide range of phenomena such as for instance plasticity [15], fracture [16], and ferroelectricity [17]. Yet, somewhat 
surprisingly, the specialization of this framework to the case of rubber viscoelasticity does not appear to have been reported 
in the literature.1

The purpose of this Note is to lay out the two-potential constitutive framework for rubber viscoelasticity. The consis-
tency of the framework with material frame indifference, material symmetry, and the second law of thermodynamics is 
placed on record. As an illustration of the generality of the framework, it is also shown that a number of popular rubber 
viscoelasticity formulations, which have been introduced over the years using different approaches, can all be derived from 
the two-potential constitutive framework.
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1 There are, however, a number of models in the literature that have been proposed using directly this approach (see, e.g., [18,19]).
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Fig. 1. Rheological model of rubber viscoelastic behavior.

A second objective of this Note is to put forth, by means of the two-potential framework, a new objective and ther-
modynamically consistent viscoelastic model for the practically relevant case of isotropic incompressible elastomers. The 
model accounts for the non-Gaussian elasticity of elastomers, as well as for the deformation-enhanced shear thinning of 
their viscous dissipation governed by the reptational motion of the underlying polymer chains. The computational tractabil-
ity and robustness of the model is illustrated together with its predictive and descriptive capabilities via comparisons with 
experimental data available from the literature for two commercially significant elastomers, Nitrile rubber and the acrylate 
elastomer VHB 4910 from 3M.

2. The two-potential framework for rubber viscoelasticity

The two-potential framework in mechanics The key idea behind the two-potential constitutive framework is to describe the 
manner in which a material stores and dissipates energy by means of two thermodynamic potentials: (i) a free energy 
function ψ and (ii) a dissipation potential φ. In the context of mechanics [11–14], formally,

ψ = ψ(F,�) and φ = φ(F,�, �̇) (1)

under isothermal conditions, where F is the deformation gradient tensor, � stands for a finite number of (macroscopically 
non-observable) internal variables, and �̇ = d�/dt denotes the time derivative of �. Both of these potentials are required 
to be non-negative and objective functions. In addition, the dissipation potential φ is required to be convex in �̇ and such 
that arg min�̇ φ(F, �, �̇) = 0. The constitutive relation implied by these potentials is given by the following two coupled 
equations:

S = ∂ψ

∂F
(F,�),

∂ψ

∂�
(F,�) + ∂φ

∂�̇
(F,�, �̇) = 0 (2)

where S stands for the first Piola–Kirchhoff stress tensor and the differential equation in time (2)2 is commonly referred to 
as the evolution equation for the internal variables �. By virtue of the objectivity of ψ and φ and the convexity of φ in �̇, 
the constitutive relation (2) satisfies the principle of material frame indifference and the second law of thermodynamics. 
Moreover, it satisfies automatically the balance of angular momentum SFT = FST.

Rubber viscoelasticity The specialization of the above constitutive framework to rubber viscoelasticity, much like to any 
other type of dissipative phenomenon, amounts to selecting appropriate internal variables � and appropriate thermody-
namic potentials ψ and φ. For rubber viscoelasticity, this selection must account for at least five features (two microscopic 
and three macroscopic in nature) that have been well established experimentally about elastomers: (i) the storage of energy 
is primarily governed by changes in entropy of the underlying polymer network, (ii) the dissipation of energy is primarily 
governed by friction among neighboring polymer chains, (iii) when all forces are removed after an arbitrary loading path, 
elastomers creep to their original configuration, (iv) when subjected to relaxation and creep loading conditions, elastomers 
exhibit a transient response that then evolves into an equilibrium state of deformation and stress, and (v) when subjected 
to loading conditions of the same type but different loading rate, elastomers exhibit different responses.

In the classical context of small-deformation linear viscoelastic behavior, features (iii) through (v) are encompassed by the 
basic rheological model depicted in Fig. 1. This model suggests that the internal variables � should be identified, loosely 
speaking, with a deformation gradient, Fv say, associated with the viscous (i.e. dissipative) part of the deformation, and 
moreover that

ψ = ψEq(F) + ψNEq(F,Fv) and φ = φ(F,Fv, Ḟv) (3)

where the free energy function ψEq serves to characterize the thermodynamic equilibrium states of the elastomer, while 
ψNEq serves to account for the additional energy storage at non-equilibrium states.

To proceed further, it is necessary to establish the precise definition of Fv and how the non-equilibrium part ψNEq of the 
free energy depends on it. Consistent with the rheological model depicted in Fig. 1 and motivated by earlier efforts [4], we 
take χ , the mapping between material points X in the undeformed reference configuration �0 and their spatial position x
in the deformed configuration �, to be given by the composition

χ(X) = χ e ◦ χv = χ e

(
χv(X)

)= χ e (ξ) with ξ = χv(X) (4)
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