[C. R. Mecanique](http://dx.doi.org/10.1016/j.crme.2015.10.003) ••• (••••) •••-•••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Comptes Rendus Mecanique

CRAS2B:3390

www.sciencedirect.com

Thin hybrid linearly piezoelectric junctions

Les jonctions minces hybrides linéairement piézoélectriques

Patcharakorn Viriyasrisuwattana^b, Christian Licht^{a,b}, Somsak Orankitiaroen^b, Thibaut Weller ^a*,*[∗]

^a LMGC, UMR-CNRS 5508, Université Montpellier-2, case courier 048, place Eugène-Bataillon, 34095 Montpellier cedex 5, France ^b *Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand*

A R T I C L E I N F O A B S T R A C T *Article history:* Received 25 August 2015 Accepted 20 October 2015 Available online xxxx *Keywords:* Piezoelectricity Thin junctions Asymptotic modeling *Mots-clés :* Piézoélectricité Jonctions minces We extend our previous study [\[1\]](#page--1-0) devoted to thin linearly piezoelectric junctions to the case when the elastic, piezoelectric and dielectric coefficients of the junction are not of the same order of magnitude. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. r é s u m é Nous étendons notre étude [\[1\]](#page--1-0) consacrée aux jonctions minces linéairement piézoélectriques au cas où les coefficients élastiques, piézoélectriques et diélectriques de la jonction ne sont pas du même ordre de grandeur.

Modélisation asymptotique

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Due to the wide range of values taken by the elastic, piezoelectric and dielectric coefficients of various devices, it is worthwhile to extend our previous study [\[1\]](#page--1-0) devoted to thin linearly piezoelectric junctions to the case when the elastic, piezoelectric and dielectric coefficients of the junction *are not of the same order of magnitude*. Our various asymptotic models for a thin piezoelectric junction between two linearly piezoelectric or elastic bodies will be indexed by $p = (p_1, p_2, p_3)$ in
 $(1, 2, 2, 4)^3$, between such as one presentively relative to the presentation of the electri $\{1, 2, 3, 4\}^3$. Indices p_1 and p_2 are respectively relative to the magnitude of the elastic and dielectric coefficients of the {1, 2, 3, 4}². Indices p_1 and p_2 are respectively relative to the magnitude of the elastic and dielectric coefficients of the adhesive with respect to that of the constant thickness 2ε of the layer containing that $h := (\varepsilon, \mu) = (\varepsilon, \mu_{mm}, \mu_{ee}, \mu_{me})$ takes values in a countable set with a sole cluster point $\bar{h} \in \{0\} \times [0, +\infty]^3$, so that

Corresponding author.

E-mail addresses: [vdplek@hotmail.com,](mailto:vdplek@hotmail.com) Patcharakorn.vi@ssru.ac.th (P. Viriyasrisuwattana), clicht@univ-montp2.fr (C. Licht), somsak.ora@mahidol.ac.th (S. Orankitjaroen), thibaut.weller@univ-montp2.fr (T. Weller).

<http://dx.doi.org/10.1016/j.crme.2015.10.003>

1631-0721/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

(2)

2 *P. Viriyasrisuwattana et al. / C. R. Mecanique* ••• *(*••••*)* •••*–*•••

The parameters μ_{mm} , μ_{ee} , μ_{me} respectively characterize the order of magnitude of the elastic, dielectric and piezoelectric coefficients of the adhesive. The case $p_1 = p_2$ being already treated in [\[1\],](#page--1-0) in the following we assume $p_1 \neq p_2$. As in [1], index p_3 characterizes the status of the adherents but also that of the interfaces betwe index p_3 characterizes the status of the adherents but also that of the interfaces between adherents and adhesive:

- $\sqrt{ }$ $p_3 = 1$: the two interfaces are electromechanically perfectly permeable
- $p_3 = 2$: the two interfaces are electrically permeable
- $p_3 = 3$: one interface is electrically permeable while the other one bears an electrode
- $p_3 = 4$: the two interfaces bear an electrode

The physical situation is that of [\[1\],](#page--1-0) which we recall as follows. Let Ω be a domain, with Lipschitz-continuous boundary, of \mathbb{R}^3 , assimilated with the physical Euclidean space with basis { e_1, e_2, e_3 }, whose intersection *S* with { $x_3 = 0$ } is a domain of \mathbb{R}^2 of positive two-dimensional Hausdorff measure $\mathcal{H}_2(S)$. Let $\Omega_{\pm} := \Omega \cap {\{\pm x_3 > 0\}}$ and ε be a small positive number, then adhesive and adherents occupy $B^{\varepsilon} := S \times (-\varepsilon, \varepsilon)$, $\Omega^{\varepsilon}_{\pm} := \Omega_{\pm} \pm \varepsilon e_3$, respectively; let $\Omega^{\varepsilon} = \Omega^{\varepsilon}_{+} \cup \Omega^{\varepsilon}_{-}$, $S_{\pm}^{\varepsilon} := S \pm \varepsilon e_3$, $\mathcal{O}^{\varepsilon} := \Omega^{\varepsilon} \cup B^{\varepsilon} \cup \pm S_{\pm}^{\varepsilon}$. Let $(\Gamma_{mD}, \Gamma_{eD})$, $(\Gamma_{eD}, \Gamma_{eN})$ be two partitions of $\partial \Omega$ with $\mathcal{H}_2(\Gamma_{mD})$, $\mathcal{H}_2(\Gamma_{eD}) > 0$ and $0 < \delta := \text{dist}(\Gamma_{eD}, S)$. For all Γ in $\{\Gamma_{mD}, \Gamma_{mN}, \Gamma_{eD}, \Gamma_{eN}\}$, Γ_{\pm} , $\Gamma_{\pm}^{\varepsilon}$, Γ^{ε} denotes $\Gamma \cap \{\pm x_3 > 0\}$, $\Gamma_{\pm} \pm \varepsilon e_3$, $\cup_{\pm} \Gamma_{\pm}^{\varepsilon}$, respectively; if a domain of \mathbb{R}^2 or positive two-dimensional Hausdorn measure $H_2(S)$. Let $\Omega_{\pm} := \Omega + \{ \pm x_3 > 0 \}$ and ε be a small positive number, then adhesive and adherents occupy $B^{\varepsilon} := S \times (-\varepsilon, \varepsilon)$, $\Omega_{\pm}^{\varepsilon} := \Omega$ and to surface forces of density F^{ε} on $\Gamma_{\text{BD}}^{\varepsilon}$ that vanishes on $\Gamma_{\text{lat}}^{\varepsilon}$. Moreover, a given electric potential $\varphi_{p_0}^h$ is applied on $\Gamma_{\text{DI}}^{\varepsilon}$ (and also on $\Gamma_{\text{eD}}^{\varepsilon}$ when $p_3 =$

If σ_p^h , u_p^h , $e(u_p^h)$, D_p^h , φ_p^h respectively stand for the fields of stress, displacement, strain, electric displacement and electric potential, the constitutive equations of the structure, for all $\hat{p} := (p_1, p_2)$, read as:

$$
(\sigma_p^h, D_p^h) = M_1^{\mu} (e(u_p^h), \nabla \varphi_p^h) \quad \text{in } B^{\varepsilon} \forall p_3 \in \{1, 2, 3, 4\}
$$

\n
$$
\begin{cases}\n(\sigma_p^h, D_p^h) = M_E^{\varepsilon} (e(u_p^h), \nabla \varphi_p^h) & \text{in } \Omega^{\varepsilon} \text{ if } p_3 = 1 \\
\sigma_p^h = a_E^{\varepsilon} e(u_p^h) & \text{in } \Omega^{\varepsilon} \text{ if } p_3 > 1\n\end{cases}
$$
\n(3)

where

$$
(M_{\mathcal{E}}^{\varepsilon}, a_{\mathcal{E}}^{\varepsilon})(x) = (M_{\mathcal{E}}, a_{\mathcal{E}})(x \mp \varepsilon e_3) \quad \forall x \in \Omega_{\pm}^{\varepsilon}
$$

$$
\left((M_{1}, M_{\mathcal{E}}) \in L^{\infty} \left(S \times \Omega; \text{Lin}(\mathbb{K}) \right) \text{ such that} \right)
$$

$$
(M_{\rm E}^{\varepsilon}, a_{\rm E}^{\varepsilon})(x) = (M_{\rm E}, a_{\rm E})(x \mp \varepsilon e_3) \quad \forall x \in \Omega_{\pm}^{\varepsilon}
$$
\n
$$
\begin{cases}\n(M_{\rm I}, M_{\rm E}) \in L^{\infty} \left(S \times \Omega; \operatorname{Lin}(\mathbb{K}) \right) \text{ such that} \\
M_{\rm I}^{\mu} := \begin{bmatrix} \mu_{mm} a_{\rm I} & -\mu_{me} b_{\rm I} \\ \mu_{me} b_{\rm I}^T & \mu_{ee} c_{\rm I} \end{bmatrix}, \quad M_{\rm E} := \begin{bmatrix} a_{\rm E} & -b_{\rm E} \\ b_{\rm E}^T & c_{\rm E} \end{bmatrix} \\
M_{\rm P} := \begin{bmatrix} a_{\rm P} & -b_{\rm P} \\ b_{\rm I}^T & c_{\rm P} \end{bmatrix}; \exists \kappa > 0 \quad \kappa |k|^2 \le M_{\rm P}(x) k \cdot k \quad \forall k \in \mathbb{K} := \mathbb{S}^3 \times \mathbb{R}^3 \text{ a.e. } x \in \Omega, \ \forall \mathbf{P} \in \{I, E\}\n\end{cases}
$$
\n(5)

and Lin(K) is the space of linear operators on K whose inner product and norm are noted \cdot and $|\cdot|$ as in \mathbb{R}^3 (the same notations for the norm and inner product also stand for \mathbb{S}^N the space of $N \times N$ symmetric matrices).

Lastly we have to add the following conditions on S_{\pm}^{ε} :

$$
\begin{cases}\np_3 = 2 & D_p^h \cdot e_3 = 0 \text{ on } S_{\pm}^{\varepsilon} \\
p_3 = 3 & D_p^h \cdot e_3 = 0 \text{ on } S_{+}^{\varepsilon}, \quad \varphi_p^h = \varphi_{p_0}^h \text{ on } S_{-}^{\varepsilon} \\
p_3 = 4 & \varphi_p^h = \varphi_{p_0}^h \quad \text{ on } S_{\pm}^{\varepsilon}\n\end{cases} \tag{6}
$$

the electric potential $\varphi_{p_0}^h$ being given on S_+^{ε} or S_{\pm}^{ε} . ectric potential $\varphi_{p_0}^h$ being given
will be convenient to use the foll

Let the potential
$$
\varphi_{p_0}
$$
 being given on 3_+ or 3_+ .

\nIt will be convenient to use the following notations:

\n
$$
\begin{cases}\n\hat{k} := (\hat{e}, \hat{g}) & \hat{e} := e_{\alpha\beta}, \ 1 \leq \alpha, \beta \leq 2, \ \hat{g} := (g_1, g_2), \ \forall k = (e, g) \in \mathbb{K} \\
k(r) = k(v, \psi) := (e(v), \nabla \psi) \ \forall r \in H^1(\mathcal{O}; \mathbb{R}^3 \times \mathbb{R}) \\
e(v) \in \mathcal{D}'(S; \mathbb{S}^2); \quad (e(v))_{\alpha\beta} = \frac{1}{2}(\partial_{\alpha} v_{\beta} + \partial_{\beta} v_{\alpha}), \ 1 \leq \alpha, \beta \leq 2, \ \forall v \in \mathcal{D}'(S; \mathbb{R}^3)\n\end{cases}
$$
\n(7)

and the *same* symbol $e(\cdot)$ shall also stand for the symmetrized gradient in the sense of distributions of $\mathcal{D}'(\mathcal{O};\mathbb{R}^3)$, $\mathcal{O} \in$ $\begin{cases} e(\nu) \in \mathcal{D}'(S; \mathbb{S}^2); \quad (e(\nu))_{\alpha\beta} = \frac{1}{2} (\partial_\alpha v_\beta + \partial_\beta v_\alpha), \ 1 \leq \alpha, \beta \leq 2, \quad \forall \nu \in \mathcal{D}'(S; \mathbb{R}^3) \end{cases}$

and the *same symbol* $e(\cdot)$ shall also stand for the symmetrized gradient in the sense of distribution $p_3 = 1$ will belong to $V_p^{\varepsilon} := H^1_{\Gamma^{\varepsilon}_{\text{mD}}}(\mathcal{O}^{\varepsilon}; \mathbb{R}^3) \times \Phi_{p_3}^{\varepsilon}$, with

Please cite this article in press as: P. Viriyasrisuwattana et al., Thin hybrid linearly piezoelectric junctions, C. R. Mecanique (2015), http://dx.doi.org/10.1016/j.crme.2015.10.003

Download English Version:

<https://daneshyari.com/en/article/10425921>

Download Persian Version:

<https://daneshyari.com/article/10425921>

[Daneshyari.com](https://daneshyari.com)