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Abstract

The Swift–Hohenberg fluid convection system with both local and nonlocal nonlinearities under
the influence of white noise is studied. The objective is to understand the difference in the dynamical
behavior in both local and nonlocal cases. It is proved that when sufficiently many of its Fourier
modes are forced, the system has a unique invariant measure, or equivalently, the dynamics is ergodic.
Moreover, it is found that the number of modes to be stochastically excited for ensuring the ergodicity
in the local Swift–Hohenberg system dependsonly on the Rayleigh number (i.e., it does not even
depend on the random term itself), while this number for the nonlocal Swift–Hohenberg system relies
additionally on the bound of the kernel in the nonlocal interaction (integral) term, and on the random
term itself.
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1. Introduction

looseness=-1Density gradient-driven fluid convection arises in geophysical fluid flows
in the atmosphere, oceans and the earth’s mantle. The Rayleigh–Benard convection is
a prototypical model for fluid convection, aiming at predicting spatio-temporal convec-
tion patterns. The mathematical model for the Rayleigh–Benard convection involves the
Navier–Stokes equations coupled with the transport equation for temperature. When the
Rayleigh number is near the onset of the convection, theRayleigh–Benard convectionmodel
may be approximately reduced to an amplitude or order parameter equation, as derived by
Swift and Hohenberg[34].
In the literature, most works (e.g.,[17,14,28]) on the Swift–Hohenberg model deal with

the following evolution equation for order parameteru(x, t), which is localized version of
the model originally derived by Swift and Hohenberg[34],

ut = �u− (1+ �xx)2u− u3,

where� measures the difference of the Rayleigh number from its critical onset value and
the cubic termu3 is an yet “approximation” of a nonlocal integral term in the original
Swift–Hohenberg model[34].
Roberts[32,33] re-examined the rationale for using the Swift–Hohenberg model as a

reliable simplifiedmodel of the spatial pattern evolution in fluid convection. He argued that,
although the localization approximation used in (1) makes some sense, the approximation
is deficient in describing some basic features of such systems, and devised via symmetry
argument the following modified Swift–Hohenberg equation with nonlocal interactions:

ut = �u− (1+ �xx)2u− uG ∗ u2,

whereG ∗ u2 is a spatial convolution integral andG(·) is a given radially symmetric
positive (or nonnegative) function.We call this functionG the kernel for the nonlocal term.
In fact, nonlocal integral terms often appear naturally in amplitude equation models for
nonequilibrium systems; see, e.g.,[25,15,8,23].
Our goal in this paper is to examine the above local and nonlocal Swift–Hohenberg

models, by investigating the dynamical difference of both models under random impact as
well as under nonlocal interactions.
Fluid systems are often subject to random environmental influences. On the one hand,

there is a growing recognition of a role for the inclusion of stochastic effects in the mod-
eling of complex systems. Randomness can have delicate impact on the overall evolution
of such systems, for example, noise-induced phase transition or stochastic bifurcation[4],
stochastic resonance[19], and noise-induced pattern formation[13,2]. Taking stochastic
effects into account is of central importance for the development of mathematical models
of such complex phenomena in engineering and science. Macroscopic models in the form
of partial differential equations for these systems contain such randomness as stochastic
forcing, uncertain parameters, random sources or inputs, and random boundary conditions.
Stochastic partial differential equations (SPDEs) are appropriate models for randomly in-
fluenced spatially extended systems. On the other hand, the inclusion of such effects has
led to interesting new mathematical problems at the interface of probability and partial
differential equations.
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