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Convergence of a Lagrangian scheme for a
compressible Naviers–Stokes model defined on a

domain depending on time

Fabien Flori∗, Christian Morelli, Pierre Orenga
CNRS UMR 6134, Université de Corse Pasquale Paoli, Campus grossetti BP 52, 20250 Corte, France

Received 10 April 2004; accepted 12 January 2005

Abstract

This paper deals with the numerical resolution of the Navier–Stokes equations defined on a time
dependent domain. We give an existence result for a fluid-structure interaction problem in which
the boundary is governed by a thin plate operator. We propose to solve the fluid equations with the
characteristics method. We approach the total derivative with a “regularized” finite difference scheme
and we study the convergence of the discrete problem towards the continuous one.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper deals with a fluid-structure interaction problem in which the structure sur-
rounds a compressible viscous fluid. We consider the case of the compressible isentropic
Navier–Stokes equations ([13], p. 236 with advection term) coupled with a thin plate oper-
ator. Even in the case of weak deformations we need to take into account domain variations
in order to obtain mass conservation and energy-type estimates[9,8]. As a consequence,
we must solve the fluid equations on a non cylindrical domain. In[9,8] the authors propose
a method based on a cylindrical regularization of the momentum equation and show that
the problem admits a solution for an adiabatic coefficient� = 1 and for small data. In this
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paper we propose a Lagrangian scheme to solve the bidimensional fluid equations(F) in
the case�>1 and for small data. Euler scheme is not appropriate for the discretization of
this kind of problem since we work on a non cylindrical domain. Moreover the Lagrangian
description allows to follow each particle in its motion and thus to take naturally into ac-
count the boundary variations. In[3], Bercovier et al. present several numerical tests on
parabolic-hyperbolic problems to evaluate some implementation procedures based on “fi-
nite elements-characteristics” schemes. One can also refer to the “characteristics-Galerkin”
method proposed by Pironneau and Huberson[18] and to the “transport-diffusion algorithm”
proposed by Pironneau[17] to solve the Navier–Stokes equations. Let us mention on the
subject the work of Süli who studies in[20] the finite difference approximation of the
Lagrangian material derivative along trajectories with the Galerkin finite element method.
More recently, we can cite the paper of Achdou and Guermond[1] on the convergence anal-
ysis of the Lagrange–Galerkin scheme for the incompressible Navier–Stokes equations. All
these works concern problems defined on domains independent of time. Generally, theArbi-
trary Lagrangian–Eulerian method is preferred to the methods coupling the characteristics
with a space discretization as Galerkin or finite elements. In particular the mesh obtained
after few iteration can be bad. Numerous papers propose to solve Navier–Stokes equations
in a moving domain by using the Arbitrary Lagrangian Eulerian method. We can cite for
instance Donéa et al. who give a survey of this method[5]. Concerning the fluid-structure
interaction, we refer to Donéa et al.[6], Grandmont and Maday[10] and Quarteroni et al.
[19].

Our purpose is to build approximate solutions of a penalized problem(F�) (F� �→0−−−→F).
To approach the total derivative, we propose a finite difference approximation at which we
add a regularizing operatorAdepending on the discretization step and vanishing as this step
goes to 0+. The Lagrangian description is physically well adapted to describe the boundary
motion. The operatorA gives the necessary compactness to justify all the calculations and
to pass to the limit inside the equations. Moreover, this operator gives a meaning to the
discretization since it allows to show that a particle do not leave the domain from a time
step to another. The Lagrangian discretization allows us to circumvent the difficulties linked
with the nonlinear term (advection) in the momentum equation and to lead us to solve a
“nice” semi-linear stationary problem.

We setQp =�p×]0, T [ where�p is an open subset ofR which physically represents the
plate at rest,�1 = �1×]0, T [, where�1 is a part of fluid boundary assumed to be fixed and
smooth enough (with meas(�1) 	= 0), �2 = ∪t∈]0,T [�2(t) × {t}, where�2(t) is the plate
deformation at timet. �2(t)=�p when there is no deformation. We setQ=∪t∈]0,T [�t ×{t}
the three-dimensional domain where�t = ∪x∈�p]d(x, t),1[ is the domain occupied by the
fluid at timest andd(x, t) the plate motion. The sections → �s =Q∩{t =s} is continuous
and�t is never empty ifd is a continuous function ofx andt (Fig. 1).

The fluid is governed by the following compressible isentropic Navier–Stokes problem
[13] with velocityu = (ux, uz) ∈ R2 and density� ∈ R+

(F)


�u
�t

+ (u · ∇)u − ��u − �∇div u + a∇�� = 0, in Q

��
�t

+ div (�u) = 0, in Q,
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