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Abstract

In this paper, the resonance two-point boundary value problems for impulsive 2n-order differential
equation

{
x(2n)(t)= f (t, x(t), x′(t), . . . , x(2n−1)(t)) 0< t <1
�x(i)(sk)= Ii,k(x(s

−
k
), . . . , x(2n−1)(s−

k
)), i = 1, . . . ,2n− 1, k = 1, . . . , p,

with following two-point boundary value conditions

x(2i+1)(0)= x(2i+1)(1)= 0, i = 0, . . . , n− 1,

and for n-order differential equation

{
x(n)(t)= f (t, x(t), x′(t), . . . , x(n−1)(t)) 0< t <1
�x(i)(sk)= Ii,k(x(s

−
k
), . . . , x(2n−1)(s−

k
)), i = 1, . . . , n− 1, k = 1, . . . , p,

with following periodic boundary value conditions

x(i)(0)= x(i)(1), i = 0, . . . , n− 1
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are considered. Sufficient conditions which guarantee the existence of at least one solution for these
problems are established. The interest is that we allow the degree of variables off to be greater
than 1. The methods used and results obtained are new and they shows us that the solvability of these
two problems are very much alike.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Let f : [0,1] × R4 be continuous ande ∈ L1[0,1]. In [24], the authors considered the
solvability of two-point boundary value problem for fourth-order differential equation

x(4)(t)= f (t, x(t), x′(t), x′′(t), x′′′(t))+ e(t), t ∈ (0,1) (1)

subject to following boundary value conditions

x′(0)= x′(1)= x′′′(0)= x′′′(1)= 0. (2)

The boundary value problem of this form was used to understand the static equilibrium of
elastic beam supported by sliding clamps. We refer the reader to[13,14]and the references
therein.

Gupta, in[14], studied the solvability of the following boundary value problem{−y(4) + g(t, y(t))= e(t), t ∈ (0,1),
y′(0)= y′(�)= y′′′(0)= y′′′(�)= 0,

(3)

On the other hand, there are many papers concerning the existence of solutions or positive
solutions of 2n-order differential equations or n-order differential equations subjected to
different kind of boundary value conditions, see,[1,2,4,8,9,23,28–30]and the references
therein.The investigation of solvability of two-point or multi-point boundary value problems
for differential equations is of interest.

Unlike Lidstone boundary value problems for 2n-order differential equations,{
x(2n)(t)= f (t, x(t), x′(t), . . . , x(2n−1)(t)) 0< t <1,
x(2i)(0)= x(2i)(1)= 0, i = 1, . . . , n− 1,

(4)

and {
x(2n)(t)= f (t, x(t), x′(t), . . . , x(2n−1)(t)) 0< t <1,
x(2i+1)(1)= x(2i)(0)= 0, i = 1, . . . , n− 1,

(5)

which were studied by many authors, the following boundary value problems{
x(2n)(t)= f (t, x(t), x′(t), . . . , x(2n−1)(t)) 0< t <1,
x(2i+1)(0)= x(2i+1)(1)= 0, i = 1, . . . , n− 1,

(6)



Download English Version:

https://daneshyari.com/en/article/10427101

Download Persian Version:

https://daneshyari.com/article/10427101

Daneshyari.com

https://daneshyari.com/en/article/10427101
https://daneshyari.com/article/10427101
https://daneshyari.com

