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1. Introduction

We consider the following Cauchy problem for a nonlinear parabolic equation:

ut = u(uxx + up), x ∈ (−∞,∞), t >0, (1.1)

u(x,0)= u0(x), x ∈ (−∞,∞), (1.2)

wherep>1 andu0(x)>0. We say that a solutionu(x, t) blows up in a finite timeT if
supx∈(−∞,∞) u(x, t) → ∞ ast → T .
It is well known that the solution to the system (1.1)–(1.2) blows up in a finite timeT for

certainu0(x). Suppose thatu blows up at(0, T ). To describe the blowup behavior near the
point (0, T ), we introduce the following similarity variables:

y = x

(T − t)�
, (1.3)

T − t = e−s , (1.4)

z(y, s)= (T − t)�u(x, t), (1.5)
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where the similarity exponents are necessarily given by

� = 1

p
, � = p − 1

2p
.

Thenu satisfies (1.1)–(1.2) if and only ifzsatisfies

zs + �z+ �yzy = z(zyy + zp), y ∈ (−∞,∞), s > s0 := − ln T , (1.6)

z(y, s0)= z0(y) := T �u0(T
�y), y ∈ (−∞,∞). (1.7)

Hence to study the blowup behavior ofunear the blowup point(0, T ) is equivalent to study
the stabilization problem of (1.6) ass → ∞. Note that the only nonzero constant solution
of (1.6) is given by

� := �� = (1/p)1/p. (1.8)

Motivated by a work of Galaktionov[2], we shall describe the blowup behavior of the
solution near the blowup point by constructing a Lyapunov function (see, e.g.,[7]). To
construct a suitable Lyapunov function, we need to study the stationary solution of (1.6):

�yy − �y�−1�y + �p − � = 0. (1.9)

Actually, to overcome the difficulties of possible singularity near the origin, we shall modify
the ODE (1.9) near the origin. For such a modification, we also refer to[5] for a study on a
quenching problem. The main difference between these two problems is the term in which
the singularity appears. The singularity appears in the reaction term for the quenching
problem in[5]. Here, we need to modify the singularity in the gradient term for our blowup
problem.
We define the�-limit set of the problem (1.6)–(1.7) by

�(z0)= {� ∈ C2(R) | there exists a sequencesj → ∞ such that

z(·, sj ) → �(·) asj → ∞ uniformly on compact sets inR}.
We state our main theorems as follows:

Theorem 1.1. Assume thatu0(x) is smooth and

u0(x)>0 for x ∈ (−∞,∞),

u′′
0(x)+ u

p
0 (x)�0 for x ∈ (−∞,∞),

u0(x)= u0(−x) for x >0,
u′
0(x)�0 for x >0, u′

0(x) /≡ 0,

and that T is the blowup time. Then the�-limit set of (1.6)–(1.7)is not empty and any
�-limit is a solution of the ODE(1.9)such that

���0, ��� + �p�0 for � ∈ [0,∞).

Theorem 1.2. If we further assume

lim inf
x→∞ x�/�u0(x)= +∞, (1.10)
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