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Local approximation by Beta operators
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Abstract

The present paper deals with the Beta approximation operators.We obtain an estimate on the rate of
convergence for functionsofboundedvariationbymeansof thedecomposition technique.Furthermore
we derive the complete asymptotic expansion of the sequence((Lnf )(x))∞n=1 for smooth functions
asn tends to infinity.
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1. Introduction

The Beta operatorsLn(n ∈ N) approximate Lebesgue integrable functionsf on the
intervalI = (0,1) by

(Lnf )(x) = 1

B(nx, n(1− x))

∫ 1

0
tnx−1(1− t)n(1−x)−1f (t)dt , (1)
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whereB(., .) denotes the Beta function. It is easily verified that the operators are positive
linear operators preserving linear functions.
The Beta operators were introduced by Lupas[6] in a slightly different form. Definition

(1) was given by Khan[4].
In the present paper we study the rate of convergence of the operatorsLn. The next

section contains an estimate of|(Lnf )(x)− 1
2{f (x+)+f (x−)}| for functionsf of bounded

variation (see Theorem 1). This result partially improves an earlier estimate due to Khan
[4]. We mention that in[5] Khan studied approximation of bounded variation functions by
general classes of operators.
The last section presents the complete asymptotic expansion for the operators (1) for

locally smooth functions. We derive the complete asymptotic expansion of the operators
Ln asn tends to infinity (see Theorem 5). It turns out that the appropriate representation is
a series of reciprocal factorials of the form

(Lnf )(x) ∼ f (x) +
∞∑
k=1

ck(f, x)

nk
(n → ∞), (2)

provided thatf ∈ L∞(0,1) possesses derivatives of all orders atx. By nk =n(n+1)...(n+
k − 1), n0 = 1, we denote the rising factorial. All coefficientsck(f, x) are calculated
explicitly. Formula (2) means that, for allq ∈ N,

(Lnf )(x) = f (x) +
q∑

k=1

ck(f, x)

nk
+ o(n−q)

asn → ∞.
For the sake of a convenient notation in the proofs we rewrite the operators (1) as

(Lnf )(x) =
∫ 1

0
Kn(x, t)f (t)dt , (3)

where the kernel functionKn is given by

Kn(x, t) = tnx−1(1− t)n(1−x)−1

B(nx, n(1− x))
. (4)

2. Rate of convergence for functions of bounded variation

2.1. The result

Throughout this note, for fixedx ∈ I , we use the auxiliary functionfx , which is defined
by

fx(t) =
{

f (t) − f (x−) (0< t <x),

0 (t = x),

f (t) − f (x+) (x < t <1).
(5)

The following theorem is the main result of the present section.
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