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Abstract

The asymptotic behavior of the composition of two resolvents in a Hilbert space is investigated.
Connections are made between the solutions of associated monotone inclusion problems and their
dual versions. The applications provided include a study of an alternating minimization procedure
and a new proof of von Neumann’s classical result on the method of alternating projections.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout,H is a real Hilbert space with inner product〈· | ·〉 and induced norm‖ · ‖.
Let A andB be two maximal monotone operators fromH to 2H with resolventsJA and
JB , respectively, and let� ∈ ]0,+∞[. Our paper is concerned with the inclusion problem

find (x, y) ∈H2 such that (0,0) ∈ (Id − R + �(A× B))(x, y), (1)
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whereR: (x, y) �→ (y, x). This abstract formulation subsumesawide spectrumof problems
in nonlinear analysis and its applications. We thus recover problems arising in variational
inequalities[30], best approximation[12], image processing[4,44], mechanics[34], and
optimization[1,31]. The dual inclusion problem associated with (1) is

find (x∗, y∗) ∈H2 such that

(0,0) ∈ ((Id − R)−1+ (A−1× B−1) ◦ (Id/�))(x∗, y∗). (2)

Now consider the alternating resolvent method

x0 ∈H and (∀n ∈ N) yn = J�Bxn, xn+1= J�Ayn, (3)

whereN = {0,1,2, . . .}. The objective of the present paper is to provide a systematic in-
vestigation of the asymptotic behavior of the sequences(xn)n∈N, (yn)n∈N, (yn − xn)n∈N,
and(xn+1 − yn)n∈N generated by this algorithm in connection with the solutions of (1)
and (2). When specialized to the case whenA and B are subdifferentials, our results
will be significantly refined and will yield new insights into an alternating minimization
procedure.
The remainder of the paper is organized as follows. Section 2 contains basic nota-

tion and auxiliary results on nonexpansive and monotone operators. In Section 3, we
provide a detailed investigation of the asymptotic behavior of (3). The applications dis-
cussed in that section include variational inequalities as well as the problem of finding
cycles for inconsistent feasibility problems. In Section 4, the results of Section 3 are
sharpened in the context of proximity operators and we obtain new results on the pri-
mal and dual behavior of an alternating minimization procedure. Among the applications
presented is a newproof of vonNeumann’s classical result on the convergence of alternating
projections.

2. Auxiliary results

We recall some useful results on monotone operators and resolvents. LetA:H→ 2H

be a set-valued operator. The sets domA = {x ∈ H | Ax �= ]}, ranA = {u ∈ H |
(∃ x ∈ H) u ∈ Ax}, and grA = {(x, u) ∈ H2 | u ∈ Ax} are the domain, the range,
and the graph ofA, respectively. The inverse ofA is the set-valued operatorA−1 with
graph{(u, x) ∈ H2 | u ∈ Ax}, the resolvent ofA is JA = (Id + A)−1, and the Yosida
approximation ofA of index� ∈ ]0,+∞[ is

�A= (Id − J�A)/�= (Id + A−1/�)−1 ◦ (Id/�). (4)

The operatorA is monotone if〈x − y |u − v〉�0, for all (x, u) and(y, v) in grA. If A is
monotone and grA cannot be enlarged without destroying monotonicity, thenA is maximal
monotone. A classical result due to Minty[35] implies thatA is maximal monotone if and
only if JA is firmly nonexpansive with domainH. We now provide basic properties of
firmly nonexpansive operators (see[24, Sections 1.9 and 1.11]for proofs and additional
properties).
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