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Abstract

The asymptotic behavior of the composition of two resolvents in a Hilbert space is investigated.
Connections are made between the solutions of associated monotone inclusion problems and their
dual versions. The applications provided include a study of an alternating minimization procedure
and a new proof of von Neumann’s classical result on the method of alternating projections.
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1. Introduction

Throughout,# is a real Hilbert space with inner produget -) and induced nornjj - ||.
Let A andB be two maximal monotone operators froi to 2 with resolvents/4 and
Jp, respectively, and let € ]0, +-oo[. Our paper is concerned with the inclusion problem

find (x, y) € #2 suchthat (0,0) € (Id — R + (A x B))(x, y), (1)
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whereR: (x, y) — (y, x). This abstract formulation subsumes a wide spectrum of problems
in nonlinear analysis and its applications. We thus recover problems arising in variational
inequalities[30], best approximatiofil2], image processinf,44], mechanicg§34], and
optimization[1,31]. The dual inclusion problem associated with (1) is

find (x*, y*) € #? such that
0,00 € ((1d — B 1 4+ (A7 x B™YH o (1d/p)) (x*, y). (2

Now consider the alternating resolvent method
xoeH and (VneN) y, =Xy, Xpr1=JpaVn, 3)

whereN = {0, 1, 2, .. .}. The objective of the present paper is to provide a systematic in-
vestigation of the asymptotic behavior of the sequeregs,cn: (Vn)nens Vn — Xn)neNs

and (x,+1 — yn),en generated by this algorithm in connection with the solutions of (1)
and (2). When specialized to the case whemand B are subdifferentials, our results
will be significantly refined and will yield new insights into an alternating minimization
procedure.

The remainder of the paper is organized as follows. Section 2 contains basic nota-
tion and auxiliary results on nonexpansive and monotone operators. In Section 3, we
provide a detailed investigation of the asymptotic behavior of (3). The applications dis-
cussed in that section include variational inequalities as well as the problem of finding
cycles for inconsistent feasibility problems. In Section 4, the results of Section 3 are
sharpened in the context of proximity operators and we obtain new results on the pri-
mal and dual behavior of an alternating minimization procedure. Among the applications
presented is a new proof of von Neumann'’s classical result on the convergence of alternating
projections.

2. Auxiliary results

We recall some useful results on monotone operators and resolvents. #et—> 27
be a set-valued operator. The sets dom {x € # | Ax # O}, ranA ={u € # |
3x € #A)u € Ax}, and grA = {(x,u) € #? | u € Ax} are the domain, the range,
and the graph oA\, respectively. The inverse & is the set-valued operatot—1 with
graph{(u, x) € V& | u € Ax}, the resolvent oA is J4, = (Id + A)~1, and the Yosida
approximation oA of indexy € 0, +o0[ is

TA=(d — Jy0)/y = (d + A7 /p) " o (1d/). (@)

The operatoA is monotone ifix — y|u — v) >0, for all (x, u) and(y, v) ingrA. If Ais
monotone and gA cannot be enlarged without destroying monotonicity, thémaximal
monotone. A classical result due to Mir{85] implies thatA is maximal monotone if and
only if J4 is firmly nonexpansive with domaig#’. We now provide basic properties of
firmly nonexpansive operators (sg&t, Sections 1.9 and 1.11¢r proofs and additional
properties).
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