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a  b  s  t  r  a  c  t

Tapered  waveguide  are  used  in number  of  integrated  optic  devices  such as  directional  couplers,  modu-
lators,  switches  mode  converters,  etc. Most  of  the methods  analyzing  tapered  waveguide  are  numerical
in nature.  In  this  paper  we present  a  simple,  fast  and  accurate  semi  analytical  method  for  z-varying
waveguide.  However,  very  few  idealized  structures  can be analyzed  directly.  The  present  method  con-
sists of  separating  transverse  and longitudinal  variation  in  the  wave  equation,  leading  to  a  differential
equation  with  z-varying  coefficients  for the  field  variation  along  z-axis.  For  the  transverse  variation  local
normal  theory  is  applied.  Now  this  equation  is applied  to specific  taper  geometries  like  linear  down  taper.
Computational  are  done  assuming  typical  values.  We  observe  variation  of  power  mode  profile  and  mode
width. Waveguide  loss  is also  including  in  the  analysis.  Finally  the  analytical  simulation  results  have  been
verified  by  the  commercial  Opti-BPM  software.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Tapered waveguides form an integral part of a wide range of
both passive and active components in modern opto-electronics.
Interconnection losses between single mode integrated-optic
devices and single mode fibers need to be small so that these devices
can find application in practical system. Apart from being used
as low loss connectors between waveguides of different dimen-
sion, they are also part of waveguide junctions and branches, and
hence of a very wide range of integrated-optics fibers devices such
as directional couplers, modulator, switches and mode converters
[1,2]. It is necessary to analyze the propagation of electric field in the
tapered waveguides for achieving desired result, but there are only
a very few cases of optical field propagation in dielectric structures
that admit to analytic solutions. The situation is even more acute if
longitudinal non-uniformity is included. The most commonly used
method for the analysis of the field propagation is probably the
beam propagation method (BPM). Other numerical method such
as finite difference (FD), finite element method (FEM), etc. is also
used. These are robust, versatile and applicable to a wide variety of
structures. Unfortunately, this is often achieved at the expenses of
long computational times and large memory requirements, both of
which can become critical issues especially when structures with
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large dimension are considered or when used within an interactive
design environment. For avoiding these difficulties, semi-analytical
methods such as Marcatillis method, effective index method etc,
are used as an alternative approach to the numerical method [3–7].
Since these are very efficient, often provide accuracy comparable
with that of numerical methods and are also easily implemented,
they are still highly valuable for the design of a particular devices
or even entire circuits. But each semi-analytical method is usually
limited to a certain type or class of problem.

In this section we  present a simple, fast and accurate semi-
analytical method for the analysis of optical field propagation in
two dimensional (2D) linear tapered waveguide. First part of this
section shows the computational work where characterized are
studied by assuming some typical values. In this part first we deter-
mine the variation of propagation constants then the variation of
power and mode width along with power loss along the taper direc-
tion is studied [8–20].

2. A new semi-analytical method

We consider a two  dimensional step index linear tapered
waveguide of which xz view is shown in Fig. 1. This structure is
assumed to be infinitely long in y-direction.

�(z) is the half width of tapered waveguide and is given by the
following equation:

�(z) = af − ai

2L
z + ai

2
(1)
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Fig. 1. 2-D linear tapered waveguide.

where af and ai represent the final full width, respectively and L
is the length of waveguide in z-direction. Let the refractive index
distribution n (x,z) is given by

n(x, z) = n1 when |x| ≤ �(z)

n(x, z) = n2 when |x| ≥ �(z)

}
(2)

Now, we consider electric field distribution in 2-D waveguide
given by

E- = E(x, z)ej(ωt−ˇz) (3)

where  ̌ the z-component of wave is vector and ω is the angular
frequency of the electric field. In terms of electric field components,
we can write

E- j = Ej(x, z)ej(ωt−ˇz) where j = x, y, z. (4)

By using Maxwell’s equation, wave equation for TE modes can
be written as

∂2
Ey

∂x2
+ ∂2

Ey

∂z2
− 2jˇ

∂Ey

∂z
+ (k2

0n2 − ˇ2)Ey = 0 (5)

For solving above Eq. (5), we assume that transverse component
Ey(x, z) of electric field E(x, z) can be written as multiplication of two
functions �(x) and ϕ(z) i.e.

Ey(x, z) = �(x)ϕ(z) (6)

On substituting Eq. (6) in Eq. (5), we get

1
�

∂2
�

∂x2
+ (k2

0n2 − ˇ2) = − 1
ϕ

[
∂2

ϕ

∂z2
− 2jˇ

∂ϕ

∂z

]
(7)

Now, we use the mode property which gives (by using local
normal mode theory)

∂2
�

∂x2
+ (k2

0n2 − ˇ2)� = 0 (8)

Then, Eq. (7) becomes

∂2
ϕ

∂z2
− 2jˇ

∂ϕ

∂z
= 0 (9)

Eq. (8) in two different regions |x| ≤ �(z) and |x| ≥ �(z) can be
written as

∂2
�

∂x2
+ (k2

0n2
1 − ˇ2)� = 0 when |x| ≤ �(z) (10a)

∂2
�

∂x2
+ (k2

0n2
2 − ˇ2)� = 0 when |x| ≥ �(z) (10b)

Since we have considered symmetric tapered so the solution of
Eq. (10) are given by [2]

�(x) = Ce(−� |x|) when |x| ≥ �(z) (11a)

�(x) = A cos(�x) when |x| ≤ �(z) symmetrical mode (11b)

�(x) = B sin(�x) when |x| ≤ �(z) antisymmetrical mode (11c)

�(x) = x
|x|De(−� |x|) when |x| ≥ �(z) (11d)

where A, B, C and D are constants, � =
√

�2
0n2

1 − ˇ2 and � =√
ˇ2 − �2

0n2
2.

Boundary condition that �(x) and ∂�/∂x are continuous a
tx = ± �(z), when applied to Eq. (11) gives

tan k�(z) = �

�
for symmetric modes (12a)

tan k�(z) = − �

�
for antisymmetric modes (12b)

These equations are transcendental equation in � and the solu-
tion of these equations gives the allowed value of ˇ. For studying
the characteristics of the fundamental modes, which is a symmet-
rical mode, we  consider dispersion equation (12a). By using Eq. (1),
dispersion equation (12) for symmetric modes can be written as

z = 1
�t1

tan−1
(

�

x

)
− l1

t1
(13)

This equation gives the variation of propagation constant ˇ
along the propagation direction for the propagation direction for
given value of t1, l1, n1 and n2. For different taper angles (tangents
of t1 gives the taper angle) corresponding variation of  ̌ can be
obtained. After obtaining the variation of propagation constant ˇ
with respect to z, we  substitute ˇ(z) in Eq. (9) which is then solved
for obtaining ϕ(z). ϕ(z), in general, is a complex function so it affects
the amplitude as well as phase of the electric field. Let ϕr(z) and ϕi(z)
are the real and imaginary part of the ϕ(z), then ϕ(z) will be given
by

ϕ(z) = ϕr(z) + ϕi(z) (14)

Now, the value of �(x) and ϕ(z) is substituted in Eq. (6) and finally
Ey(x, z) in Eq. (3), we get the total electric field distribution in step
index linear tapered waveguide.

P = 1
2

∫
Re
〈

E- × H-
∗〉 .ẑds. (15)

where s is the surface area of transverse cross section and z is the
direction of the waveguide axis, normal to the surface s, and ‘*’
denotes the complex conjugate. Then,

P(z) = 1
2ω	0

[
ˇ(ϕ2

r + ϕ2
i ) + ϕi

∂ϕr

∂z
− ϕr

∂ϕi

∂z

]
2

∫ ∞

0

∣∣�(x)
∣∣2dx. (16)

This equation gives the power per unit length in y-direction.
After substituting the value of �(x) from Eq. (11) the power per unit
length in y-direction in the core of the waveguide will be given by

P(z) =
∣∣A∣∣2

2ω	0

[
ˇ(ϕ2

r + ϕ2
i ) + 
i

∂ϕr

∂z
− ϕr

∂ϕi

∂z

][
�(z) + 1

�

]
. (17)

Here A is an unknown constant which can be calculated by using
the fact that at the input of the waveguide i.e. at z = 0 the launched
power is p(0) then from the above equation we get

P(0) =
∣∣A∣∣2

2ω	0
ˇ(z = 0)

[
�(z = 0) + 1

�(z = 0)

]
where �(z = 0) = ai

2
(18)

Eq. (18) gives the value of the constant A. This value of A is
substituted in Eq. (17), which then gives the power variation in
fundamental mode with respect to z in linear tapered waveguide.
From the knowledge of the value of A, one can see the variation of
modes profile and modes along z. The MATLAB simulation of mode
profile along the z-direction can be represented in Fig. 2. Finally this
analytical result has been verified by commercial software.
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