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Abstract

Based on the generalized Collins diffraction integral and the expansion of the hard aperture function into a finite
sum of complex Gaussian functions, the approximate analytical expressions of Bessel–Gaussian beams and QBG
beams passing through a paraxial ABCD optical system with an annual aperture are derived. As special cases, the
corresponding closed-forms for the unaperture or circular aperture or circular black screen cases are also given. The
results provide more convenience for studying their propagation and transformation than the usual way by using
diffraction integral formula directly. Numerical examples are given to illustrate the propagation properties of
Bessel–Gaussian and QBG beams.
r 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

The propagation of paraxial light beams in optical
systems is of great importance and attracts the attention
of many optical researchers for a long time, and various
closed-form paraxial solutions of the Helmholtz equa-
tion have been described over the past years. A
particularly interesting class of such solutions, known
as Bessel–Gaussian beams, has been introduced by Gori
and co-workers in 1987 [1]. In 1999, Caron and
Potvliege proposed another class of simple closed-form
solution of the paraxial wave equation, which will be
referred to as ‘QBG beams’ in the following [2]. The
QBG beams is similar to the Bessel–Gaussian beams,
however, the argument of the Bessel function is not

linear in the transverse coordinate but quadratic.
Recently, a large number of papers have been devoted
to studying the propagation characteristics of Bessel-
modulated Gaussian light beams [3–10]. Up to now, the
Bessel-modulated Gaussian light beams passing through
a paraxial ABCD optical system with an annular
aperture, to our knowledge, has not been studied
elsewhere. In fact, the annular apertured case represents
the more general case, and the unapertured or apertured
or black screen case could be regarded as its special case.
More recently, the propagation of Laguerre–Gaussian
beams through a paraxial ABCD optical system with an
annular aperture has been analyzed based on the
generalized Huygens–Fresnel diffraction integral and
the expansion of the hard-edged aperture function into a
finite sum of complex Gaussian functions [11]. Using the
similar way as for Laguerre–Gaussian beams, the
propagation of Bessel-modulated Gaussian light beams
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passing through a paraxial ABCD optical system with
an annular aperture will be studied in this paper.
The paper is organized as follows. The propagation

and transformation of Bessel-modulated Gaussian light
beams passing through a paraxial ABCD optical system
with an annular aperture is analyzed in Section 2. This
analysis will be discussed in the two cases: Bessel–Gaus-
sian and QBG beams. In Section 3, the applications of
the propagation formulae are illustrated with detailed
numerical examples, and a comparison with the method
used diffraction integral directly is made, which shows
the advantage of our approach. Finally, a simple
conclusion is outlined in Section 4.

2. Approximate propagation equation of

Bessel–Gaussian or QBG beams through an

annular apertured paraxial ABCD optical

system

Consider a paraxial optical system with an annular
aperture illuminated by a Bessel–Gaussian or QBG light
beam, which is represented by Eðr0; y0; z ¼ 0Þ at the
input plane and by Eðr; y; zÞ at the output plane. For an
optical system described by an ABCD matrix, the
relationship (called also the Collins diffraction integral)
between the input and output functions can be
established as [12]
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where k ¼ 2p=l is the wave number, a and b denote the
out-radius and in-radius of the annular aperture, A, B, C

and D are the elements of the ray matrix. In Eq. (1) an
unimportant phase factor is omitted for the sake of
simplicity.
Introducing the hard aperture function
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then Eq. (1) becomes
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Generally, we can expand the hard aperture function
into a finite sum of complex Gaussian functions:
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where Ah;g and Bh;g denote the expansion and Gaussian
coefficients, respectively, which could be obtained by
optimization–computation directly [13]. However, it
should be noted that Eq. (4) is only an approximate
expression for the hard aperture function. It has been
shown that the larger the N is and the higher the
simulation efficiency is [11,13–15].

2.1. Bessel–Gaussian beams

In the cylindrical coordinate system ðr; y; zÞ the field
distribution Eðr; y:zÞ of Bessel–Gaussian beams at the
plane z ¼ 0 is given by Gori and Potvliege [1] and
Belafhal [4]

Eðr0; y0; 0Þ ¼ C0Jmðar0Þ exp �
r20
w2
0

� 
expð�imy0Þ (5)

with a ¼ k sin f, (6)

where Jm is the mth-order Bessel function of the first
kind and the parameters f, C0 and w0 are the cone angle
of the ideal non-apodized Bessel field (in the paraxial
approximation), the amplitude at the origin and the spot
size of the fundamental Gaussian mode. Fig. 1(a) shows
the intensity distribution, normalized to unity at r ¼ 0,
for a mth-order Bessel–Gaussian beam with m ¼ 0, 1, 2
at the z ¼ 0 plane. The beam parameters are a ¼

24:81mm�1 and w0 ¼ 0:5mm.
Substituting from Eqs. (4) and (5) into Eq. (3) and

recalling the integral formulae [16]
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