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Abstract:  The meshless weighted least-squares (MWLS) method is a pure meshless method that com-

bines the moving least-squares approximation scheme and least-square discretization. Previous studies of 

the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method 

possesses several advantages, such as high accuracy, high convergence rate, good stability, and high com-

putational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS 

computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. 

Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin 

method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These 

numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat 

transfer problems. 
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Introduction 

In the past twenty years, a series of numerical methods 
called meshless methods (also called meshfree meth-
ods) have been developing rapidly. The first meshless 
method was smoothed particle hydrodynamics devel-
oped by Lucy[1] and Gingold and Monaghan[2] in 1977, 
and then thoroughly studied by Monaghan[3]. After the 
element free Galerkin method (EFGM) was proposed 
by Belytschko et al. in 1994[4], meshless methods have 
drawn more and more attention and have been success-
fully applied to various problems in solid mechanics, 
fluid mechanics, heat transfer, and electromagnetic 
fields[5-7].  

Most kinds of meshless methods have been built 
upon discretization schemes like the Galerkin method, 

the Petrov-Galerkin method, or the direct collocation 
method. Generally speaking, meshless methods of the 
Galerkin and Petrov-Galerkin types need numerical in-
tegration, which results in much more computational 
effort than the finite element method (FEM) in most 
cases; while the direct collocation meshless method 
suffers from instabilities. 

Like the least-squares finite element method 
(LSFEM)[8], meshless methods can also be based on 
least-square schemes. The meshless weighted least-
squares (MWLS) method[9] is such a method. Appli-
cation of MWLS to elastostatics and wave propaga-
tion problems has shown that it is accurate, stable, 
and efficient. 

In this paper, the MWLS method is extended to 
solve heat conduction problems. The basic MWLS 
formulation for solving steady-state heat conduction 
problems is developed, and the optimal choice of com-
putational parameters is discussed. Several 2-D exam-
ples are presented with the numerical results compared 
with analytical and EFGM solutions. 
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1  Moving Least-Squares  
Approximation 

In the moving least-squares (MLS) scheme, the local 
approximation of the field variable  is expressed 
as 
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where ( )ip x  is the basis function, generally a com-
plete monomial,  is the number of terms in the ba-
sis function, and  are the coefficients, which are 
determined by minimizing the following L
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where Iu  is the value of  at node ( )u x Ix , and 
 is the weight function that is usually a 

compactly supported function which is only nonzero in 
a small neighborhood called the “support domain” of 
node 

( )Iw x

Ix  where it reaches its maximum value. Many 
kinds of weight functions have been used in meshless 
methods. The cubic spline function is used in this 
paper, 
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where  is the normalized radius equal to the ratio of 
the distance between node 

r
I  and the evaluation point 

to the radius of the support domain. 
The minimization of the function  is equivalent 

to 
J

 ( ) ( ) ( )J∂
= −

∂
0A x a x B x u

a
=  (4) 

where the matrices are given by 
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Substituting the coefficients  from Eq. (4) into 
Eq. (1), the MLS approximation can be expressed as 
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where the shape function . T 1( ) ( ) ( ) ( )I IN −=x p x A x B x

2  Basic Equations for Heat  
Conduction Problems and the 
Least-Squares Discretization 

The steady-state temperature distribution in domain 
Ω  is governed by 
 2 ( ) 0,k u Qρ Ω∇ + = ∈x x  (8) 

with the boundary conditions: 
 u u= ,     (9) 1Γ∈x

 k u q∇ =in ,    (10) 2Γ∈x

 ( )ak u h u u∇ = −in ,    (11) 3Γ∈x

where  and k ρ  represent the thermal conductivity 
and the density,  is the heat source per unit mass. Q

( )u x  is the prescribed temperature, and ( )q x  is the 
prescribed heat flux.  denotes the convection heat-
transfer coefficient,  is the prescribed ambient 
temperature, and  represents the unit outward nor-
mal to the boundary. 
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If the field variable is approximated by the MLS 
scheme in Eq. (7), Eq. (8) and the boundary conditions 
Eqs. (9)-(11) cannot be satisfied exactly, which leads 
to residuals. Different ways to minimize the residuals 
correspond to different discretization schemes, such as 
the Galerkin method, the Petrov-Galerkin method, and 
the direct collocation method, all of which can be re-
garded as special cases of the weighted residual 
method[10]. In this paper, the residuals are minimized in 
a least-squares manner, as the sum of the squares of the 
residuals, 

 1

2 3

2 2
1 1

2 2
2 2 3 3

( )d ( )d

( )d ( )d

R R

R R

Ω Γ

Γ Γ

Π Ω α Γ

α Γ α Γ

= + +

+

∫ ∫
∫ ∫

x x

x x
 

(12)
 

which is to be minimized.  and ( )R x ( )iR x  refer to 
the residuals corresponding to the governing equation 
and the boundary conditions on ( ) and iΓ 1,2,3i = iα  
is the weight coefficient which is used as a penalty to 
enforce the boundary conditions. In Eq. (12), the func-
tion Π  is an integral, which requires numerical 
quadrature in the final equations and increases the 
computational effort. To overcome this shortcoming, 
the following discrete functional is used instead. 
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