Author's Accepted Manuscript

Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics

Taiga Yamasaki, Katsutoshi Idehara, Xin Xin

DOI: http://dx.doi.org/10.1016/j.jbiomech.2016.04.024

S0021-9290(16)30498-5

Reference: BM7703

PII:

To appear in: Journal of Biomechanics

Received date: 7 September 2015 Revised date: 13 February 2016 Accepted date: 21 April 2016

Cite this article as: Taiga Yamasaki, Katsutoshi Idehara and Xin Xin, Estimatior of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics, *Journal of Biomechanics* http://dx.doi.org/10.1016/j.jbiomech.2016.04.024

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse

dynamics

Taiga Yamasaki^{a,*}, Katsutoshi Idehara^a, Xin Xin^a

^a Faculty of Computer Science and Systems Engineering, Okayama Prefectural University

Abstract

We propose a new method to estimate muscle activity in a straightforward manner with

high accuracy and relatively small computational costs by using the external input of

the joint angle and its first to fourth derivatives with respect to time. The method solves

the inverse dynamics problem of the skeletal system, the forward dynamics problem of

the muscular system, and the load-sharing problem of muscles as a static optimization

of neural excitation signals. The external input including the higher-order derivatives

is required for a calculation of constraints imposed on the load-sharing problem. The

feasibility of the method is demonstrated by the simulation of a simple musculoskeletal

model with a single joint. Moreover, the influences of the muscular dynamics, and

the higher-order derivatives on the estimation of the muscle activity are demonstrated,

showing the results when the time constant of the activation dynamics are very small,

and the third and fourth derivatives of the external input are ignored, respectively. It

is concluded that the method has a potential to improve estimation accuracy of muscle

activity.

Keywords: Musculoskeletal system, Estimation, Higher-order derivative, Inverse

dynamics, Forward dynamics, Optimization

*Corresponding author. Faculty of Computer Science and Systems Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, JAPAN

Email address: taiga@cse.oka-pu.ac.jp (Taiga Yamasaki)
Preprint submitted to Journal of Biomechanics

Download English Version:

https://daneshyari.com/en/article/10431014

Download Persian Version:

https://daneshyari.com/article/10431014

<u>Daneshyari.com</u>