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a b s t r a c t

Motion capture is frequently used for studies in biomechanics, and has proved particularly useful in
understanding human motion. Unfortunately, motion capture approaches often fail when markers are
occluded or missing and a mechanism by which the position of missing markers can be estimated is
highly desirable. Of particular interest is the problem of estimating missing marker positions when no
prior knowledge of marker placement is known. Existing approaches to marker completion in this
scenario can be broadly divided into tracking approaches using dynamical modelling, and low rank
matrix completion. This paper shows that these approaches can be combined to provide a marker
completion algorithm that not only outperforms its respective components, but also solves the problem
of incremental position error typically associated with tracking approaches.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Motion capture is a frequently used tool in biomechanics,
typically relying on multiple cameras to track markers placed on
joints or limbs of interest. Unfortunately, occlusions and marker
detection failures often result in a number of missing markers.
Missing markers are common in motion capture applications, and
typically result in a large amount of time being spent manually
correcting marker trajectories before any in-depth analysis
can occur.

The traditional approach to solving this problem uses manual
marker correction (sometimes using spline or linear interpolation)
or relies on skeleton fitting (Herda et al., 2000). The former is
typically inaccurate and only suitable for short occlusion dura-
tions, while the latter usually requires specific marker placement
and limits researchers to standard skeleton rigs. More recently, a
number of studies (Xiao et al., 2011; Lai et al., 2011; Tan et al., June
2013) have shown how missing marker positions can be estimated
by using matrix factorisation techniques. While these can be
effective, they are sometimes slow, and implementations often
inaccessible to many biomechanics practitioners.

Tracking approaches that use dynamical motion models and
temporal information to fill in missing trajectories have also been
proposed previously, but these are often disregarded due to
potential difficulties in designing dynamical models and concerns

about efficacy. Wu and Boulanger (2011) use a Kalman filter
together with a constant velocity motion model to estimate mar-
ker positions, but this approach is extremely susceptible to drift.
Unfortunately, this latter behaviour has led a number of works
(Feng et al., 2014; Federolf, 2013; Xiao et al., 2011; Baumann et al.,
2011) to disregard Kalman filtering, under the misconception that
this behaviour applies regardless of the dynamical model used.

Various approaches that attempt to learn a dynamical model
while estimating marker positions have been proposed (Li et al.,
2009), but are typically too slow to be of practical use.

Liu and McMillan (2006) use a family of low dimensional local
linear models trained using multiple prior recordings. When a new
sequence is provided, this approach selects an appropriate model
for each frame using a random forest classifier, before predicting
missing marker positions using the appropriate model. Unfortu-
nately, this approach requires a priori training data, and is only
applicable if the markers are placed in fixed, predefined positions
that match those used in training.

Aristidou et al. (2008) utilise the fact that the distance between
markers on a given limb should remain constant to estimate
centres of rotation for limbs, and use centres of rotation tracked
using a Kalman filter to infer marker position. Unfortunately, this
approach requires that multiple markers are present for each limb,
assumes limbs are rigid bodies, and is vulnerable to increasing
error as the duration for which markers are missing increases.
Tracking using an improved variable turn model and an unscented
Kalman filter (Aristidou and Lasenby, 2013) lessens this effect, but
still assumes the presence of rigid limbs with at least 3 markers
placed on each limb.
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Dorfmüller-Ulhaas (2003) track the rotation and translation of
rigid bodies using an extended Kalman filter (a linear approx-
imation to a non-linear motion model is used for state predictions
and update), assuming a constant angular velocity rotation model
and a constant acceleration translation model. Unfortunately, this
approach requires specific marker placement for the rigid bodies
to be detected, and is also liable to drift. This approach is similar to
that described by Cerveri et al. (2003), who used an extended
Kalman filter and second order motion model to track joints using
2D image measurements obtained from multiple cameras.

This paper addresses the drift problem in tracking approaches
through the introduction of a fast and accurate marker completion
algorithm that combines temporal smoothing and matrix factor-
isation, and which is accessible to the biomechanics community.1

The primary contributions of this paper are as follows:

� We show that two previously separate families of approaches to
marker completion are in fact complimentary and can be
combined.

� We show how the most commonly listed flaw in tracking
approaches (incremental error when markers are missing for
extended periods of time) can be avoided.

� We provide an approach to marker completion that is com-
pletely data driven, requiring no prior knowledge of marker
placement or number and making no assumptions about the
presence of rigid bodies.

2. Missing marker position estimation

We briefly describe the two primary families of approaches to
missing marker completion, before introducing our approach,
which combines elements of both.

2.1. Marker smoothing

Knowledge of the expected motion of markers in the form of a
dynamical model can be used together with detected markers to
estimate marker positions. Let xt denote the position vector of
markers at time t, and zt the set of measured marker positions.
Assuming N markers, the state vector is constructed as
xt ¼ ½x1; y1; z1…xN ; yN ; zN �T . Our goal is to estimate xt using mea-
surements zt .

The Kalman filter (Kalman, 1960) is frequently used for pro-
blems like these, as it provides an optimal solution to tracking
problems when states are governed by linear Gaussian motion and
observation models. Let us assume that a state xt evolves as

xt ¼ Ftxt�1þwt ; ð1Þ
with process noise wt drawn from a zero-mean Gaussian dis-
tribution with process covariance Q , and Ft a linear transition
matrix that describes how states are likely to evolve over con-
secutive time steps. Further, let us assume that we can obtain
measurements zt , which are related to the state at time t by the
equation

zt ¼Htxtþvt ; ð2Þ
with measurement or observation noise vt drawn from a zero-
mean Gaussian distribution with measurement covariance R, and
Ht a linear measurement matrix that maps measurements to
states. The Kalman filter provides an optimal estimate of the state
xt given a history of measurements up to time t for models of this
form. In post-processing applications, the Kalman filter can be

extended to the Rauch–Tung–Striebel (RTS) smoother (Rauch et
al., 1965), which provides an optimal estimate of the state xt given
all measurements in the sequence (see Appendix A for the
smoothing recursions).

Unfortunately, it can be hard to design the dynamical model Ft ,
particularly without prior knowledge of marker placement,
expected motion and the relationship between markers. A naive
approach would be to model each marker's motion independently,
but this failure to account for marker correlations limits the
achievable accuracy and results in large errors if markers are
missing for prolonged periods of time.

2.2. Low rank matrix completion

Motion capture sequences are typically recorded at an extre-
mely high frame-rate, and there is often little change in motion
over consecutive frames. As a result, the sequences can usually be
described in a low dimensional space. This property has led to a
number of approaches that try and find missing marker positions
by using a low dimensional representation of motion capture
sequences to reconstruct the original data.

We briefly illustrate these techniques using a representative
approach termed mSVD (Srebro et al., 2003), but there are mul-
tiple decompositions that could be used. Let X denote a T � d
training set, formed by stacking all marker position vectors in a
motion capture sequence horizontally. Here, T is the length of the
motion capture sequence, while d denotes the dimensionality of
the state vector xt , typically 3N, where N is the number of markers.

A low dimensional representation of this matrix can be
obtained by performing singular value decomposition (SVD), a
factorisation of a matrix into the form

X¼UΣVn; ð3Þ
where U and V are unitary matrices, n denotes a conjugate
transpose, and Σ is a diagonal matrix containing the singular
values of X, all positive and listed in decreasing order (Stewart,
1993). The magnitude of the singular values can be viewed as a
measure of a mode's (columns of U) contribution to the matrix X.
A low rank approximation of the matrix X can be obtained by
discarding the modes and basis functions (rows of V) of X, which
correspond to singular values of smaller magnitude.

mSVD is an iterative approach that decomposes motion capture
data, discards a portion of the basis functions, reconstructs the
original data, replaces missing values in the sequence with
reconstructed ones, and repeats until convergence. Essentially, this
approach uses the low dimensional representation of sequences to
find correlations between markers, and uses markers that are
present to provide information about those that are missing.
Unfortunately, this can be slow and memory intensive, as it relies
on multiple decompositions.

3. Low dimensional Kalman smoothing

In previous sections, we introduced smoothing and low rank
matrix completion approaches to missing marker problems. The
former requires the design of a complex motion model typically
utilising knowledge of marker placement, while the latter can be
slow and memory intensive due to its iterative nature. Our
approach combines the two by projecting markers into a lower
dimensional space learned from the sequence, performing Kalman
smoothing in this space using a random walk motion model and
then returning to the original space, using correlated markers to
reduce the average error in each marker position estimate.

In our formulation we let X denote an M � d training set,
formed by taking M position vectors in a motion capture sequence

1 Matlab and Python implementations are available at https://github.com/
mgb45/MoGapFill, together with a Python plugin for Vicon Nexus.
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