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a b s t r a c t

Cell tracking is becoming increasingly important in cell biology as it provides a valuable tool for analysing
experimental data and hence furthering our understanding of dynamic cellular phenomena. The advent
of high-throughput, high-resolution microscopy and imaging techniques means that a wealth of large
data is routinely generated in many laboratories. Due to the sheer magnitude of the data involved manual
tracking is often cumbersome and the development of computer algorithms for automated cell tracking
is thus highly desirable.

In this work, we describe two approaches for automated cell tracking. Firstly, we consider particle
tracking. We propose a few segmentation techniques for the detection of cells migrating in a non-
uniform background, centroids of the segmented cells are then calculated and linked from frame to
frame via a nearest-neighbour approach. Secondly, we consider the problem of whole cell tracking in
which one wishes to reconstruct in time whole cell morphologies. Our approach is based on fitting a
mathematical model to the experimental imaging data with the goal being that the physics encoded in
the model is reflected in the reconstructed data. The resulting mathematical problem involves the
optimal control of a phase-field formulation of a geometric evolution law. Efficient approximation of this
challenging optimal control problem is achieved via advanced numerical methods for the solution of
semilinear parabolic partial differential equations (PDEs) coupled with parallelisation and adaptive
resolution techniques.

Along with a detailed description of our algorithms, a number of simulation results are reported on.
We focus on illustrating the effectivity of our approaches by applying the algorithms to the tracking of
migrating cells in a dataset which reflects many of the challenges typically encountered in
microscopy data.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cell migration is an essential part of many normal biological
processes and diseases (Friedl and Gilmour, 2009). The dynamics
of collective-cell movement, cell-to-cell interactions as well as
interactions between cells and the extracellular environment are
closely related to the bio-chemical and bio-mechanical properties
of a single cell (Friedl and Alexander, 2011; Weigelin et al., 2012;
Wolf et al., 2013).

Bio-laboratories nowadays produce a huge amount of data in
multi-dimensions (both in space and time) e.g., microscopy ima-
ges, that is far beyond the capacity of manual analysis in order to
make informed decisions about cell shape evolution and migration
trajectories (Maska et al., 2014). Hence, one demands computa-
tionally fully-automated cell tracking procedures. The focus of this
work is to present techniques to solve the challenging problems
that arise when one seeks to automate reconstruction of cell shape
evolution and cell migration trajectories from static data.

We present two different approaches; the first approach involves
an algorithm for single particle tracking that is successively applied
for multiple particles in which the most challenging step is detecting
cells migrating over a substrate where the intensities of both cells
and background, using the microscopy and imaging techniques
under consideration, are (spatially) non-uniform and the second
approach seeks to address the problem of whole cell tracking in
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which cell shape evolution is reconstructed from static imaging data,
with the corresponding recovered data generated by fitting a
mathematical model, derived from physical principles, to the data
(Croft et al., 2014; Blazakis et al., 2015; Yang et al., 2015). For particle
tracking, described in Section 3, we treat each cell as a single object
(i.e., a dot) and seek to determine the speed and direction of cell
centroid trajectories. The latter approach, illustrated in Section 4,
focusses on recovering dynamic cell morphologies and typically is of
use to study a single cell or multiple cells in a low density setting.
This resulting mathematical problem is formulated as the optimal
control of a geometric evolution law (DuChateau and Zachmann,
1989; Rektorys, 1999).

2. Cell culture and microscopy

As mentioned above, to test the performance of our algorithms,
we apply them to an experimental dataset generated in the labs of
ibidi GmbH (2015). We summarise the details of the experimental
protocol used to generate the biological data used in this study.

The human fibrosarcoma cell line HT-1080 (obtained from DSMZ,
Germany) was grown in Dulbecco's modified Eagle's Medium
(DMEM, Sigma-Aldrich) supplemented with 10% fetal bovine serum
(FBS, Sigma-Aldrich) at 37 °C and 5% CO2. Cells were grown to 80%
confluence, trypsinised, and filled into the chemotaxis chambers of
the μ-Slide Chemotaxis ibiTreat (ibidi GmbH, Germany) at a density
of 3� 106 cells=ml. To perform a migration experiment without
chemoattractant both reservoirs and the channel were filled with
DMEM with 5% FBS. Video microscopy was performed using a Nikon
TiE microscope equipped with a 4x phase-contrast objective and the
pixel size 1.66 μm/px. The time-lapse interval was ten minutes over a
time period of 24 h.

3. Segmentation and particle tracking

In this setting, the first step is to individually represent each
cell by a single dot (typically the centre of the segmented cell), this
is achieved in a two-part process, first the cells are segmented
from background and noise effects, then each individual cell is
detected and labelled. The second step is to determine the corre-
spondence between cells from one frame to the other, this is
typically done by linking the corresponding dots between imaging
frames. After a brief review of some existing algorithms for seg-
mentation, we describe our algorithms for each step and illustrate
their effectiveness on the experimental dataset under considera-
tion in this work.

3.1. A review of segmentation techniques

In phase-contrast microscopy, phase shifts of the specimen are
transformed into amplitude (intensity) shifts, thus permitting
objects that are usually almost invisible (e.g. cells), to be optically
visible. Furthermore, this also results in possible background
inhomogeneities and various noise effects also becoming more
prominent. Certain techniques are necessary to help identify cells
and image segmentation, so that a common approach can be
employed. Image segmentation is defined as a process of parti-
tioning an image into homogeneous groups such that each region
is homogeneous but that no union of two adjacent regions is
homogeneous (Pal and Pal, 1993). In this section, we describe some
widely used segmentation techniques from the literature.

For completeness, there is an alternative, namely fluorescent
microscopy, that has been commonly used to study processes in
the physiological context of intact living cells (Pepperkok and
Ellenberg, 2006). The basic idea is to bind some fluorescent stains
with the DNA of the targeted cellular components, for example,
the nucleus of the cell. Since the light from the fluorescent stains
have specific wavelength (Grynkiewicz et al., 1985), with correct
imaging techniques, it is possible to only capture these illuminated
components, in turn helping identify the positions of cells. In
principle, it is possible to label cells in fluorescent microscopy with
no or little image segmentation. On the other hand, comparing to
phase-contrast microscopy, disadvantages of fluorescent micro-
scopy include that the extra staining requires further manual input
thereby prolonging the whole process and that, the fluorescence
can only illuminate for a certain length of time, namely its bleach
rate (Denk et al., 1990), thus is unfavourable for longer experi-
ments. Moreover, advanced segmentation techniques are still
required if the illuminated components collide or overlap.

We illustrate a typical phase-contrast image from the biological
dataset used in this work in Fig. 1 and the full length video (raw_data.
avi) is included in the supplementary material.

Depending on the objective lens, the phase-contrast technique
works in a certain range of phase shifts only. If the shift is too big,
artefacts are created. The halo effect is a common phase shift
artefact. For example, when a cell rounds up (such as when
undergoing cell division), a bright halo is often visible around the
cell. If cells or cellular structures like filopodia are less thick and
flat on the substrate they are optically dark.

In Fig. 1, we identify (by arrows in the figure) three main sets of
distinct features representing the cells:

(a) cells can be clearly observed, they have little or no halo arte-
facts and the centre generally is the brightest with the highest
intensity value;

Fig. 1. A typical phase-contrast image from the biological dataset. Arrows and three letters are used to identify cells with distinct features.
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