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a b s t r a c t

An updated technique to develop biofidelity response corridors (BRCs) is presented. BRCs provide a
representative range of time-dependent responses from multiple experimental tests of a parameter from
multiple biological surrogates (often cadaveric). The study describes an approach for BRC development
based on previous research, but that includes two key modifications for application to impact and
accelerative loading. First, signal alignment conducted prior to calculation of the BRC considers only the
loading portion of the signal, as opposed to the full time history. Second, a point-wise normalization
(PWN) technique is introduced to calculate correlation coefficients between signals. The PWN equally
weighs all time points within the loading portion of the signals and as such, bypasses aspects of the
response that are not controlled by the experimentalist such as internal dynamics of the specimen, and
interaction with surrounding structures. An application of the method is presented using previously-
published thoracic loading data from 8 lateral sled PMHS tests conducted at 8.9 m/s. Using this method,
the mean signals showed a peak lateral load of 8.48 kN and peak chest acceleration of 86.0 g which were
similar to previously-published research (8.93 kN and 100.0 g respectively). The peaks occurred at similar
times in the current and previous studies, but were delayed an average of 2.1 ms in the updated method.
The mean time shifts calculated with the method ranged from 7.5% to 9.5% of the event. The method may
be of use in traditional injury biomechanics studies and emerging work on non-horizontal accelerative
loading.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of injury biomechanics, there is a continuous need
for robust techniques to generate biofidelity response corridors
(BRCs). BRCs provide a representative range of time-dependent
responses from multiple experimental tests of a parameter from
multiple biological surrogates (often cadaveric). Since BRCs ideally
represent fundamental behavior of some tested population, more
general than a single experimental test, they are an essential input
for the design of models whether they are physical, such as
anthropomorphic test devices (ATDs), or computational, such as
finite element models. In the past, many BRC corridors were

simply drawn by eye by bounding a set of data using a series of
straight lines (Kent et al., 2006; Lobdell et al., 1973). There is a
need for methods that can be consistently applied without sub-
jective input to various loading scenarios, from traditional blunt
impacts in the horizontal plane to emerging applications based on
vertical loading. The desired output is a corridor with well-defined
boundaries based on robust statistical principles.

The scope of this work is focused on single parameter, time-
history corridors. Numerous methods have been presented on this
subject (Yoganandan et al., 2014). Seminal work in injury bio-
mechanics essentially employed a visually estimated average to
draw straight line corridors encapsulating data (Kroell et al., 1974;
Viano et al., 1989). Many studies have employed a straightforward
mean and standard deviation calculation at each time point for all
data in a set (Yoganandan et al., 2004). The open source software
“Correlation and Analysis” or CORA, is an objective curve evalua-
tion software that calculates corridors based on a set of signals.
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These corridor calculations can be done using two methods, either
generating inner and outer corridors that are set percentages of
the mean signal maximum, or using the mean and standard
deviation of an input set of signals, without further alignment
(Gehre et al., 2009; Gehre and Shahlschmidt, 2011). In the area of
objective curve comparison, the fixed inner and outer corridors
from CORA have been documented in a recent ISO standard (ISO/
TS 18571) (Barbat et al., 2013). While representative of the peaks,
fixed corridors overestimate variance in the dataset particularly
when signal magnitudes are low, such as in the loading and
unloading phases (Maltese et al., 2002; Viano, 1989).

Other, arguably more sophisticated techniques have been used
to shift signals forward or backward in time to minimize variance
in the set prior to calculating corridors. Raymond et al. (2009)
selected time¼0 of all signals as the time when the signal reached
10% peak, then aligned all data to that time prior to calculating
mean and standard deviations. Maltese et al. (2002) used a time
alignment method that minimizes the cumulative variance of the
signals. The method outlined a set of rules for different types of
signals (i.e. acceleration, force, displacement) adding versatility
and repeatability, and making it one of the more frequently
referenced methods e.g. (Yoganandan and Pintar, 2005). However,
that method requires subjective selection of one signal as the
standard for alignment.

Recently, Nusholtz et al. (2013) published a technique that
generates a representative curve (RC, essentially the mean) and
evaluates repeatability within a system and reproducibility
between systems. Time alignment is achieved by iteratively max-
imizing the cross correlation of all signals within a data set. This
process obviates the need for subjective selection of a standard
signal. While the paper also introduces statistical checks for
repeatability and reproducibility within and between sets, the
present work focuses only on the RC calculation.

The purpose of the current work is to improve the method used
to calculate the Representative Curve (RC) outlined in Nusholtz
et al. (2013) which can be applied to single parameter, time-
dependent biomechanical response data for the generation of
BRCs from PMHS data. We introduce modifications of two key
parts of the Nusholtz et al. method. First, the proposed method
limits correlation calculation to the loading portion of the curve,
and second, the calculation of the correlation coefficients between
signals is done using point-wise normalization (PWN).

2. Methods

Prior to BRC generation, biomechanical data are typically scaled to a target
body habitus using methods such as equal stress-equal velocity (Eppinger et al.,
1984) or impulse-momentum (Mertz, 1984; Viano, 1989). This paper assumes that
such measures have been completed prior to BRC generation.

Because the methods of Nusholtz et al. forms the foundation of this work, a
brief review of the process is included. Further details can be found in Appendix C
of Nusholtz et al. (2013). The technique begins with a set of time history signals of a
response parameter from multiple tests with identical sample rates. As described
in Nusholtz et al. (2013) the mean to mean technique is used to calculate a
representative curve (RC). The heart of this approach is the calculation of a cross
correlation coefficient (CCC) between signals, shown below in Eqs. (1) and (2a). For
ease of comparison with Nusholtz et al. (2013), the notation p is used here for the
joint cross correlation coefficient. The notation CCC is meant to represent the
maximized coefficient p, which occurs at time τ.

p x; yð Þ : ¼ pðx; y; τÞ ð1Þ

p x; y; hð Þ ¼
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Here, x(t) and y(t) are two time-valued signals within the data set, and h is an
arbitrary shift in time. The iterative technique used in Nusholtz et al. (2013) is
preserved in this study, wherein a p value is determined for all pairings in the set,
and then the two best-correlated signals are averaged. Signals are iteratively
included in the average based on how well they correlate, until a representative
curve is calculated. This is the close of the first iteration, and results in RC1. RC1 is
then used as the seed signal and the process is repeated until the CCC values do not
change, resulting in an optimized RC.

The principal modification introduced in this work is that correlation coeffi-
cients are calculated using PWN (Eq. (2b)), resulting in the modified correlations
that are termed CCCL. The PWN technique weighs all time points equally: each
value in the resulting vector is normalized by the maximum difference that can
occur between the two signals at that time point (sum of absolute values). To
clarify, the term normalization used within PWN calculation (Eq. (2b)) should not
be confused with its well-known definition in the study of injury biomechanics
related to population variation. The entire calculation is subtracted from unity
because it is a sum of squares difference, and unlike Eq. (2a), better matches
between curves will approach zero. The use of PWN was needed because Eq. (2a)
aligns truncated signals at their peaks. This is an artifact of Eq. (2a) (the numerator
is largest when peaks are aligned) and artificially increases variance between sig-
nals particularly early in the event. To calculate the RC, the iterative technique
described above is again followed. The point-wise standard deviation of the signals
after alignment provides the corridors for the BRC.

To apply this method to high rate biomechanical data, it was desirable to use
only the loading portion of the curve since time-dependent variation of unloading
response generally increases with increasing strain rate. The loading portion was
defined as the time between the initiation of the test and the time at which the
dependent mechanical variable (e.g. force or moment) reached the local maximum
of the greatest magnitude. The definition was different for acceleration data
however. In that case, the end of loading was considered the time at which the
integrated signal (velocity) reached the local maximum of greatest magnitude. This
exception was made for acceleration signals to indicate the time when kinematics
of the subject were no longer under the influence of the source of loading.

To demonstrate this method, biomechanical impact data originally published
by Maltese et al. (2002) was used. Two sets of human cadaver data (lower spine
acceleration and thorax lateral force), from lateral sled impacts into a rigid wall at
8.9 m/s were downloaded from the Biomechanics Test Database maintained by the
National Highway Traffic Safety Administration (NHTSA) (NHTSA, 2014). The PMHS
in these tests had a mean age of 67.978.8 years, weight of 68.5715.4 kg and
included 2 female and 6 males for a total of 8 specimens. Data were accessed using
the NHTSA Signal Browser software version 1.3.6.2. The data was scaled to a target
mass of 76 kg using the equal stress, equal velocity method (Eppinger et al., 1984)
and filtered using CFC 180 and CFC 1000 on lower spine acceleration and thorax
lateral force respectively. The data was resampled to a common sampling frequency
of 10 kHz.

The signals were time aligned using the PWNmethod described above. The BRC
was generated using the RC (mean of the signals after optimized alignment), and a
corridor that represented7one standard deviation of the mean response. Resam-
pling, time alignment, and BRC generation was performed using MATLAB version
2014a. For comparison purposes, the mean and standard deviation curves from
Figs. A1 and A5 in Maltese's paper (Maltese et al., 2002), for the rigid test condition,
were digitized using MATLAB version 2014a.

3. Results

The results of the study are found in Fig. 1. The left side of the
figure shows acceleration data whereas the right shows the force
data. These two exemplar sets were selected to demonstrate how
the loading portion is identified in acceleration vs. other types of
biomechanical data (e.g. force). In the upper panels of the plot, red
circles identify the end-time for the loading phase of each signal.
Only the portion of the signal to the left of the red circle was used
in the alignment; however the full signal was used to calculate the
BRC. The lower panels of the plot show the raw data curves in cyan
which reflect the optimized signal alignment. The bold face black
curve shows the RC, with the standard deviation represented
above and below.

The average magnitude of the time shift for the lower spine
acceleration and thorax force data was 4.5 ms and 5.7 ms respectfully.
Note in this example, time traces were shifted independently of one
another. Assuming a 60ms event, these shifts represent 7.5% to 9.5% of
the total event time. The algorithm ran six iterations for the accel-
eration based event and four iterations for the force based event
before reaching the convergence criteria (no change in sum of CCCL).

F.S. Gayzik et al. / Journal of Biomechanics 48 (2015) 4173–41774174



Download English Version:

https://daneshyari.com/en/article/10431256

Download Persian Version:

https://daneshyari.com/article/10431256

Daneshyari.com

https://daneshyari.com/en/article/10431256
https://daneshyari.com/article/10431256
https://daneshyari.com

