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a b s t r a c t

A new strain energy function for the hyperelastic modelling of ligaments and tendons whose fascicles
have a helical arrangement of fibrils is derived. The stress–strain response of a single fascicle whose
fibrils exhibit varying levels of crimp throughout its radius is calculated and used to determine the form
of the strain energy function. The new constitutive law is used to model uniaxial extension test data for
human patellar tendon and is shown to provide an excellent fit, with the average relative error being
9.8%. It is then used to model shear and predicts that the stresses required to shear a tendon are much
smaller than those required to uniaxially stretch it to the same strain level. Finally, the strain energy
function is used to model ligaments and tendons whose fascicles are helical, and the relative effects of the
fibril helix angle, the fascicle helix angle and the fibril crimp variable are compared. It is shown that they
all have a significant effect; the fibril crimp variable governs the non-linearity of the stress–strain curve,
whereas the helix angles primarily affect its stiffness. Smaller values of the helix angles lead to stiffer
tendons; therefore, the model predicts that one would expect to see fewer helical sub-structures in stiff
positional tendons, and more in those that are required to be more flexible.

& 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ligaments and tendons are important connective tissues;
ligaments connect bone to bone, providing stability and allowing
joints to function correctly, and tendons connect muscle to bone to
transfer forces generated by muscles to the skeleton. They both
have a hierarchical structure consisting of several fibrous subunits
(Kastelic et al., 1978; Screen et al., 2004), which, from largest to
smallest, can be defined as follows: fascicles (50–400 μm dia-
meter), fibrils (50–500 nm), sub-fibrils (10–20 nm), microfibrils
(3–5 nm), and finally, the tropocollagen molecule (∼1.5 nm). The
geometrical arrangement of many of these subunits varies
between different ligaments and tendons; for example, the
patellar tendon's fascicles are coaligned with its longitudinal axis,
whereas the anterior cruciate ligament's are helical (Shearer et al.,
2014). The fibrils within a fascicle may also either be coaligned or
helical with respect to its longitudinal axis (Yahia and Drouin,
1989). In both cases, the fibrils exhibit an additional waviness,
called crimp, which is superimposed upon their average direction
and varies in magnitude throughout the fascicle's radius (Kastelic
et al., 1978; Yahia and Drouin, 1989). This intricate structure pro-
duces complex mechanical behaviour such as anisotropy,

viscoelasticity and non-linearity, which varies between different
ligaments and tendons (Benedict et al., 1968; Tipton et al., 1986). It
is not currently known, however, which levels of the hierarchy are
most influential in governing their mechanical performance.

To begin understanding these mechanical features, it is of
interest to model their elastic properties, neglecting viscoelasticity.
Elastic models are expected to be valid in both the low and
extremely high strain rate limits where hysteresis is minimised.
Ligament and tendon stress–strain behaviour under uniaxial ten-
sion is characterised by an initial non-linear region of increasing
stiffness, termed the toe-region, followed by a linear region before
the onset of failure (Fig. 1). Several authors have derived expres-
sions to describe this behaviour (Frisen et al., 1969; Kastelic et al.,
1980; Kwan and Woo, 1989); however, to consider more complex
deformations, it is useful to characterise the elasticity of a material
in terms of a strain energy function (SEF).

Many non-linear elastic SEFs have been proposed for soft tis-
sues (Fung, 1967; Gou, 1970; Holzapfel et al., 2000), but few have
focused specifically on ligaments and tendons. Whilst many SEFs
are general enough to be applied to modelling ligaments and
tendons, the majority of them contain variables that cannot be
directly experimentally measured (Shearer, 2015). This limits their
ability to analyse which physical quantities are most important in
governing a specific ligament's or tendon's behaviour. Micro-
stuctural models are better equipped to facilitate this analysis,
provided their parameters can be experimentally determined.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jbiomech
www.JBiomech.com

Journal of Biomechanics

http://dx.doi.org/10.1016/j.jbiomech.2015.07.032
0021-9290/& 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

n Tel.: þ44 161 275 5810.
E-mail address: tom.shearer@manchester.ac.uk

Journal of Biomechanics 48 (2015) 3017–3025

www.sciencedirect.com/science/journal/00219290
www.elsevier.com/locate/jbiomech
http://www.JBiomech.com
http://www.JBiomech.com
http://dx.doi.org/10.1016/j.jbiomech.2015.07.032
http://dx.doi.org/10.1016/j.jbiomech.2015.07.032
http://dx.doi.org/10.1016/j.jbiomech.2015.07.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2015.07.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2015.07.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2015.07.032&domain=pdf
mailto:tom.shearer@manchester.ac.uk
http://dx.doi.org/10.1016/j.jbiomech.2015.07.032


Two examples of microstructural SEFs are those derived by
Grytz and Meschke (2009) and Shearer (2015). Both are based on
the geometrical arrangement of the fibrils within the fascicle and
neglect any subunits below the fibril level (Fig. 2). Shearer con-
sidered a fascicle whose fibrils are coaligned with its axis, but
have a distribution of crimp levels throughout its radius (Fig. 3
(1) and (2)), whereas Grytz and Meschke considered a helical
arrangement of fibrils, but neglected their crimp (Fig. 3(3) and (4)).
Grytz and Meschke defined the angle that these fibrils make with
the fascicle's longitudinal axis as the crimp angle, but this is not
the usual definition of crimp. Here, this quantity is referred to as
the fibril helix angle. The logical extension of these models is to
allow the fibrils to be helically arranged and crimped (Fig. 3(5));
this is the case considered here. A scanning electron microscope
(SEM) image displaying fibrils that are both helically arranged and
crimped appears in Fig. 9 of Yahia and Drouin (1989).

A considerable amount of work has been dedicated to model-
ling other types of fibre-reinforced composite materials. Crossley
et al. (2003), for example, derived analytical solutions that govern
the bending and flexure of helically reinforced, anisotropic, linear
elastic cylinders. This is built on a large body of literature on
modelling cables (Cardou and Jolicouer, 1997) and rope (Costello,
1978, 1997). Adkins and Rivlin (1955) discussed finite deforma-
tions of materials that are reinforced by inextensible cords, and
Spencer and Soldatos (2007) considered finite deformations of
fibre-reinforced elastic solids whose fibres are capable of resisting
bending. Whilst these general theories are extremely valuable for
certain problems, to model the behaviour of a material with a

microstructure as complex as a ligament or tendon requires a
more specific model.

In this paper, a new SEF that governs the behaviour of a liga-
ment or tendon with the microstructure described above is
derived. In Section 2, the stress–strain response of a single fascicle
is calculated and this relationship is used to determine the form of
the new SEF in Section 3. The SEF is used to model the mechanical
response of human patellar tendon to uniaxial extension and shear
in Section 4. In Section 5, the case of a ligament or tendon with
helical fascicles is explored and the relative effects of the fibril
crimp angle, fibril helix angle and fascicle helix angle are analysed.
Finally, the implications of the model are discussed in Section 6.

2. The stress–strain response of a fascicle with helically
aligned fibrils

Kastelic et al. (1980) derived the stress–strain response of a
fascicle with fibrils that are coaligned with its longitudinal axis,
and Shearer (2015) adapted their method to derive analytical
expressions for these relationships for different fibril crimp angle
distributions. Here, this work is extended to ligaments and ten-
dons whose fascicles have a helical arrangement of fibrils.

Kastelic et al. (1978) observed that crimp angle varies
throughout the radius of a fascicle with longitudinal fibrils. It was
then noted by Yahia and Drouin (1989) that this is also the case in
fascicles with a helical arrangement of fibrils. The minimum crimp
angle occurs at the fascicle's centre, the maximum at its edge.
Therefore, assuming that only fully extended fibrils contribute to

Nomenclature

pθ ρ( ) fibril crimp angle distribution
p crimp angle distribution parameter
ρ non-dimensional radial variable in fascicle
θo crimp angle of outermost fibrils
P, p unit vectors in fibril direction before/after fascicle

stretch
α, ψ fibril/fascicle helix angle
λ, ϵ given fascicle stretch/strain
Λ component of λ in fibril direction

pΛ ρ( ) stretch in fibril direction as fibrils at radius ρ
become taut

Λ⁎, λ⁎ stretch in fibril/fascicle direction that tautens
outer fibrils

ϵ⁎ critical fascicle strain as outer fibrils become taut
Rp radius within which all fibrils are taut for a given λ
Pp tensile load experienced by fascicle

pσ ρ( ) contribution of fibril stress at radius ρ in fascicle
direction

p
fσ ρ( ) p

f ρϵ ( ) stress/strain in fibril at radius ρ
E fibril Young's modulus
τp average traction in fascicle direction
β 2 1 cos / 3 sino o

3 2θ θ( − ) ( )
W strain energy function
I1, I4 isotropic/anisotropic strain invariant
ϕ collagen volume fraction
Wm, Wf component of W associated with matrix/fibrils
B, C left/right Cauchy–Green tensor
M, m undeformed/deformed fascicle direction vector
F deformation gradient
T Cauchy stress
Q Lagrange multiplier

Tf , tf component of stress/traction associated with
fascicles

m̂ unit vector in direction of m
γ, η constants defined in Eqs. (32) and (33)
μ ground state shear modulus of ligament/tendon

matrix
η̂ constant defined in Eq. (41)
R, Θ, Z circular cylindrical coordinates in undeformed

configuration
A, a undeformed/deformed tendon radius
L, l undeformed/deformed tendon length
r, θ, z circular cylindrical coordinates in deformed

configuration
ζ stretch in longitudinal direction of tendon
ei, Ej basis vectors in deformed/undeformed

configuration
n outer unit normal to curved surface of tendon
Szz, Szz

exp theoretical/experimental longitudinal nominal
stress

e engineering strain
m machine precision /2( )
δ, Δ relative/absolute error
δ , Δ average relative/absolute error

maxδ , maxΔ maximum relative/absolute error
x, y, z Cartesian coordinates in deformed configuration
X, Y, Z Cartesian coordinates in undeformed configuration
γ1, γ2 shear strains
T1, T2 shear stresses
χ function defined in Eq. (64)
C constant of integration defined in Eq. (68)
N resultant axial load acting on tendon
S average force per unit undeformed area acting on

tendon
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