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a b s t r a c t

New studies show that the elastic properties of the vocal folds (VFs) vary locally. In particular strong
gradients exist in the distribution of elastic modulus along the length of the VF ligament, which is an
important load-bearing constituent of the VF tissue. There is further evidence that changes in VF health
are associated with alterations in modulus gradients. The role of VF modulus gradation on VF vibration
and phonation remains unexplored. In this study the magnitude of the gradient in VF elastic modulus is
varied, and sophisticated computational simulations are performed of the self-oscillation of three-di-
mensional VFs with realistic modeling of airflow physical properties. Results highlight that phonation
frequency, characteristic modes of deformation and phase differences, glottal airflow rate, spectral-width
of vocal output, and glottal jet dynamics are dependent on the magnitude of VF elastic modulus gra-
dation. The results advance the understanding of how VF functional gradation can lead to perceptible
changes in speech quality.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There is evidence that the vocal fold (VF) state of health in-
fluences the spatial distribution of VF elastic properties. Kelleher
et al. (2012) show that gradients in elastic modulus are smaller in
cover and ligament specimens excised from subjects associated
with tobacco use than specimens excised from non-smokers.
Kelleher et al. (2010) show that in vacuo eigenmodes of VF tissue
are dependent on gradients in elastic modulus. Zhang et al. (2007)
show that in vacuo eigenmodes are playing an important role in
the onset of flow–structure interaction (FSI). These findings lead to
the hypothesis that functional gradients in VF tissue modulus in-
fluence VF dynamics during self-sustained FSI. Answering this
hypothesis would contribute to understanding why several studies
report perceptible differences between speech quality of smokers
and non-smokers.

A very limited number of studies conduct the simulation of VF
self-oscillation under conditions of three-dimensional (3D) geo-
metry and physically reasonable air flow and VF tissue properties.
These conditions impose significant computational modeling
challenges. Bhattacharya and Siegmund (2014b) demonstrate the
use of commercially available dedicated solvers for flow and
structural domains to solve problems of VF FSI including vibration
and contact, VF dehydration (Bhattacharya and Siegmund, 2014a)
and surface adhesion (Bhattacharya and Siegmund, 2015).

Bhattacharya and Siegmund (2014c) validated this framework
against experiments on physical replicas.

This study aims to obtain insights into the role of gradients in
VF elastic modulus on VF dynamics during phonation. FSI simu-
lations are conducted using a partitioned approach, whereby
segregated solvers for the governing equations of the solid and
fluid domains exchange information after every time increment.
The investigation is limited to a linear elastic isotropic description
of VF tissue properties situated within a 3D model of the glottal
tract. The influence of gradation is quantified by analyzing VF
surface dynamics during phonation.

2. Method

2.1. Computational model

The VF model comprises separate continuum region definitions
for the glottal airflow and the pair of VFs. The FSI model describes
the interaction between each VF and the airflow (Bhattacharya and
Siegmund, 2014b).

The M5 description (Scherer et al., 2001) defines the geometry
of the airflow domain (Fig. 1a) with a rectangular x x xis ml ap− −
coordinate system aligned with inferior–superior (is), medial–lat-
eral (ml) and anterior–posterior (ap) directions. The sub- and su-
pra-glottal tracts have uniform rectangular cross-sectional di-
mensions (ml: W¼17.4 mm and ap: L¼20.0 mm) but unequal is
dimensions (T 10.0 mmentry = and T 20.0 mmexit = respectively). The
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is dimension of the glottal region is T¼10.7 mm. The fluid medium
has properties of air (constant density 1.23 kg/mf

3ρ = , dynamic

viscosity 1.79 10 kg/m,5μ = · − etc.) modeled as a Newtonian fluid

with fluid stress fτ and fluid velocity v→ related by

v v . 1fτ μ= [∇→ + (∇→)′] ( )

The continuity and momentum conservation equations are
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along with boundary conditions:
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with p the fluid pressure, vg
→ the discretized grid velocity and p tin( )

the time-varying pressure at the inlet:
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where p 400 Pamax = and t0¼0.150 s. Zero pressure at the outlet
and no-slip and no-penetration at all bounding surfaces except the
inlet and outlet are enforced. Here v→ represents the fluid velocity,
Vf the volume of the fluid domain, V f∂( ) its bounding surface, p the
fluid pressure, I the second-order identity tensor, and fτ the sur-
face traction vector on the fluid boundary. The operator �

represents a tensor contraction and the operator ∇ the gradient
vector. The motion of the moving–deforming glottal surface given
by the grid velocity vg

→ is determined by the FSI model (described
later). The fluid volume is discretized using tetrahedral cells, with
a minimum cell size of 0.050 mm near the glottis ensured
throughout the computation. The fluid model is implemented in
ANSYS/Fluent (ANSYS Fluent Release 12.0 User Guide, 2009). The
solution is advanced in time following the implicit PISO (Pressure
Implicit with Splitting of Operator) algorithm with neighbor and
skewness correction (Issa, 1986).

The VF domain comprises identical and disjoint left and right
solid parts (Fig. 1b shows the left VF). Both VFs have a depth
D¼8.40 mm separated initially by dg¼0.600 mm. VF mechanics is
governed by the principle of virtual work (Zienkiewicz et al.,
2005):
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with σ the Cauchy stress, Vs the solid volume, sτ the traction ap-
plied on the boundary V s∂( ), ρs the uniform solid density, u→ the
solid displacement, D u= ∇→ the displacement gradient, δ a varia-
tion of the virtual variables (subscripted ‘v’), operator: the double-
contraction of two tensors, accent-marks ̇ and ¨ respectively the
first- and second-order time-derivatives and ν the Poisson ratio.
The VF constitutive behavior is isotropic linear viscoelastic with σ
depending on the history of the deviatoric strain rate e ̇ and bulk
strain rate ϵ̇:
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The time dependence of the shear and bulk moduli are
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The viscoelastic relaxation is modeled by shear and bulk relaxation
factors g1¼0.100 and k1¼0.100 respectively and relaxation time-

Fig. 1. (a) Geometry of the glottal airflow domain: the inlet, outlet and glottal surfaces are shaded, the coordinate origin (at the intersection of the mid-coronal plane, the
mid-saggital plane and the VF superior surface) is⊗; (b) geometry of the left half of the solid VF model: line AB and point XMC are reference regions at which the VF motion is
characterized in this paper; and (c) mid-coronal section showing both pairs of VFs and rigid planes: coordinate axes are offset from the origin for clarity.
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