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a b s t r a c t

We present a computational method for calculating the distribution of wall shear stress (WSS) in the
aorta based on a velocity field obtained from two-dimensional (2D) phase-contrast magnetic resonance
imaging (PC-MRI) data and a finite-element method. The WSS vector was obtained from a global least-
squares stress-projection method. The method was benchmarked against the Womersley model, and the
robustness was assessed by changing resolution, noise, and positioning of the vessel wall. To showcase
the applicability of the method, we report the axial, circumferential and magnitude of the WSS using in-
vivo data from five volunteers. Our results showed that WSS values obtained with our method were in
good agreement with those obtained from the Womersley model. The results for the WSS contour means
showed a systematic but decreasing bias when the pixel size was reduced. The proposed method proved
to be robust to changes in noise level, and an incorrect position of the vessel wall showed large errors
when the pixel size was decreased. In volunteers, the results obtained were in good agreement with
those found in the literature. In summary, we have proposed a novel image-based computational method
for the estimation of WSS on vessel sections with arbitrary cross-section geometry that is robust in the
presence of noise and boundary misplacements.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Two-dimensional cine phase-contrast magnetic resonance ima-
ging (2D CINE PC-MRI) and three-dimensional (3D) CINE PC-MRI
have been used non-invasively to obtain qualitative and quantitative
information on the cardiovascular system. Several numerical proce-
dures have recently been proposed to evaluate flow patterns,
determine the wall shear stress (WSS) distribution, and calculate
pressure difference maps (Oshinski et al., 1995; Tyszka et al., 2000;
Ebbers et al., 2001; Barker et al., 2010; Bock et al., 2010, 2011). These
methods have shown the potential of 2D and 3D CINE PC-MRI for
assessing different cardiovascular diseases (Wigström et al., 1999;

Weigang et al., 2008; Boussel et al., 2009; Kafka and Mohiaddin,
2009; Markl et al., 2010; Cecchi et al., 2011; Frydrychowicz et al.,
2011; Francois et al., 2012). In particular, the evaluation of the WSS
distribution in the aortas of healthy volunteers (Stalder et al., 2008;
Frydrychowicz et al., 2009a) and patients has recently been reported
by several groups (Frydrychowicz et al., 2009b; Barker et al., 2010;
Harloff et al., 2010; Bieging et al., 2011). It has been shown that
different WSS-related parameters – including the axial and cir-
cumferential components of WSS and the oscillatory shear index –

have potential for assessing vascular function in several cardiovas-
cular diseases such as atherosclerosis, aneurysms, stenosis and
restenosis (Cecchi et al., 2011).

The estimation of the WSS distribution from 2D CINE PC-MRI
goes back to the work of Oshinski et al. (1995), Morgan et al.
(1998a,b) and Oyre et al. (1998). In Oshinski et al. the WSS is
calculated from the product of the fluid viscosity and the velocity
gradient at the wall, correcting for the wall position using MR data.
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Assuming an axial flow profile in a perfectly cylindrical vessel
(Poiseuille flow model), Oyre et al. fitted a paraboloid to the
through-plane velocity profile measured at a boundary layer (Oyre
et al., 1998). From the fit, they were able to compute the axial
velocity gradient, and in turn the WSS in the carotid arteries of
seven healthy volunteers. Whereas this approach may be valid for
small and rounded vessels, it cannot capture other flow patterns
commonly found in larger vessels, where the velocity profile does
not follow a parabolic distribution. Morgan et al. followed a dif-
ferent approach in which the tangential, radial and axial velocity
gradients were numerically estimated using a finite-difference
scheme to compute the WSS tensor at the left and right pulmonary
arteries (Morgan et al., 1998a,b). However, it is well known that
the finite-difference method cannot effectively handle complex
geometries such as those found in the cardiovascular system,
neither can it impose boundary conditions on irregular surfaces in
a direct manner (Zienkiewicz et al., 2005). To account for arbitrary
cross-section shapes, Stalder et al. (2008) used cubic B-spline
interpolations to smoothly describe the lumen contours as well as
to obtain a continuous and smooth description of the velocity
field. This method has been the standard for quantifying the WSS
from 2D cine PC-MRI. However, as noted by Stalder et al., the
computation of WSS using B-spline interpolations on 2D CINE PC-
MRI and on reformatted slices from 3D CINE PC-MRI, both with 3D
velocity encoding, introduces important approximation errors due
to limited spatial resolution and numerical differentiation of the
velocity field, which in the case of a Poiseuille flow can be as high
as 40% in the estimation of WSS.

In this work we propose a finite-element-based methodology
to compute the WSS at arbitrary plane sections of the thoracic
aorta from a velocity field given by 2D CINE PC-MRI data. The
finite-element method has a well-established reputation for effi-
ciently representing 3D complex geometries, and has been suc-
cessfully employed in patient-specific cardiovascular and cardiac
simulations (Taylor and Figueroa, 2009; Xiao et al., 2013; Hurtado
and Kuhl, 2014), providing in general a robust means for cardio-
vascular modeling and computation, with numerical convergence
that can be rigorously proven (Hurtado and Henao, 2014). In par-
ticular, finite-element methods have been used in computational
fluid dynamic (CFD) simulations to obtain different hemodynamic
parameters on the basis of 3D models build from angiography
images and boundary conditions from 2D PC-MRI (LaDisa et al.,
2011; Goubergrits et al., 2014). Nevertheless, as far as we are
aware, finite elements have not been applied directly to process
the velocity data from 2D PC-MRI and in turn to obtain the WSS.

To estimate the velocity gradients, the domain of interest is
discretized using triangular elements, and the velocities at the
center of each voxel are interpolated using a conforming finite-
element approximation of the velocity field. In order to improve
the accuracy of the computed strain and stress fields, several a
posteriori stress-recovery methods have been proposed in the
literature (Zienkiewicz et al., 2005). Here, we adopt a global least-
squares stress projection method (Oden and Brauchli, 1971), which
has been shown to be super-convergent for linear elements
(Zienkiewicz and Zhu, 1992), exhibiting in some cases a better
performance than alternative methods (Heimsund et al., 2002).
We tested the proposed methodology using a Womersley flow
profile as a benchmark. The robustness of the method was asses-
sed under different levels of resolution and noise and incorrect
positioning of the vessel wall. To showcase the applicability of the
method, we report the axial, circumferential and magnitude of the
WSS using in-vivo data.

2. Theory

2.1. Computation of the wall shear stress using a finite-element
method

The shear stress vector and magnitude at the vessel wall were
computed using the procedure described in the electronic sup-
plementary material (see Appendix: finite element formulation),
which we briefly summarize next. The velocity field was obtained
at a discrete set of pixels using 2D CINE PC-MRI. Using linear tri-
angular finite-element interpolations, the velocity-component
field xu t,i

FEM ( ) is continuously described by the expression:

x xu t N v t, , 1i
FEM

A A iA∑( ) = ( ) ( ) ( )η∈

where xNA ( ) is the finite-element shape function associated to
node A, v tiA ( ) is the i-th velocity component at the node A at time t ,
and η is the set of all nodes of the triangular mesh used as dis-
cretization of the section under study. Based on Eq. (1), the shear
stress tensor components can be approximated using a global least-
squares stress projection method (Oden and Brauchli, 1971; Hinton
and Campbell, 1974), which consists in approximating the stress field

x t,Sτ ( ) by:

x xt N t, , 2
S

A A A∑τ τ( ) = ( ) ( ) ( )η∈

where Aτ is the nodal smoothed value of the stress compo-
nents obtained from a global least-squares minimization of the
stress L2 error. Once all the shear-component fields are obtained,
the shear stress tensor τ at any point in the domain of interest, and
particularly at the domain boundaries (i.e. vessel wall), can be

estimated using Eq. (2). Let n
→→

be the inward unit vector normal to
the vessel wall at a particular point of interest. Then, the WSS
vector corresponding to the shear stress tensor takes the form:

t n . 3τ= ⋅ ( )
→→ →→

For the purpose of this work, we consider the axial, cir-
cumferential and magnitude of the WSS vector projected over the

lumen contour tproy

→
:

⎜ ⎟⎛
⎝

⎞
⎠tt n n .

4proy = × ×
( )

→ → →→→

From t t t t, ,proy X Y Z[ ]=
→

, the axial component, tZ , represented the
projection in the longitudinal direction, and the circumferential
component represented the projection along the lumen cir-

cumference, which was calculated as t tx z
2 2+ .

The method just described was implemented in Python lan-
guage. It is important to mention that we defined the velocities in
the boundary of our mesh to be equal to zero, following a no-slip
boundary assumption.

3. Methods

3.1. Womersley flow model and robustness analysis

To evaluate the stability and robustness of the method, we generated synthetic
velocity profiles using the Womersley model (Eq. (5)) (Womersley, 1955). A
detailed explication of the Womersley model is given in electronic supplementary
material (Womersley formulation – see Appendix). From the Womersley model the
velocity inside a cylinder is given by:
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where vel x y t, ,( ) is the velocity in the point x y,( ) (radius r) at time t , in the
interior of a cylinder of length L and radius R; ρ is the blood density, μ is the viscosity
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