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a b s t r a c t

Growth and rupture of aneurysms are driven by micro-structural alterations of the arterial wall yet
precise mechanisms underlying the process remain to be uncovered. In the present work we examine a
scenario when the aneurysm evolution is dominated by turnover of collagen fibers. In the latter case it is
natural to hypothesize that rupture of individual fibers (or their bonds) causes the overall aneurysm
rupture. We examine this hypothesis in computer simulations of growing aneurysms in which
constitutive equations describe both collagen evolution and failure. Failure is enforced in constitutive
equations by limiting strain energy that can be accumulated in a fiber. Within the proposed theoretical
framework we find a range of parameters that lead to the aneurysm rupture. We conclude in a qualitative
agreement with clinical observations that some aneurysms will rupture while others will not.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Aneurysms are abnormal dilatations of vessels in the vascular
system, and they exist in two major forms: fusiform and saccular.
Fusiform aneurysms are found in the human abdominal aorta.
Saccular aneurysms are found in cerebral blood vessels. The Brain
Aneurysm Foundation (http://www.bafound.org/) reports that 2 in
100 people in US have an unruptured brain aneurysm and the
annual rate of rupture is about 8–10 per 100,000 people. There is a
brain aneurysm rupture every 18 minutes. Ruptured brain aneur-
ysms are fatal in about 40% of cases. Of those who survive, about
66% suffer some permanent neurological deficit. Similarly, abdom-
inal aortic aneurysm (AAA) is found in �2% of the elderly
population, with �150,000 new cases diagnosed each year, and
the occurrence is increasing (Bengtsson et al., 1996; Ouriel et al.,
1992). In many cases AAA gradually expands until rupture causing
a mortality rate of 90%. The AAA rupture is considered the 13th
most common cause of death in US (Patel et al., 1995).

Medical doctors consider a surgery option for enlarging AAA,
for example, when its maximum diameter reaches 5.5 cm or/and
expansion rate is greater than 1 cm per year. This simple geome-
trical criterion may possibly underestimate the risks of rupture of
small aneurysms as well as overestimate the risks of rupture of
large aneurysms. Biomechanical approaches to modeling aneur-
ysm failure are desired.

Watton et al. (2004) pioneered mathematical modeling of
enlarging aneurysms. They described evolution of various arterial

constituents including collagen and elastin. An interesting feature
of their work is an explicit notion of the deformation correspond-
ing to fiber recruitment. Most other fiber deformation models do
not account for fiber recruitment explicitly yet introduce the
phenomenon implicitly with the help of U-type (with significant
stiffening) stress-strain curves. Baek et al. (2006) made another
important step in modeling aneurysm growth by introducing a
very convenient description of evolving strain energy density
function – see formula (1) below. Building on the approaches
mentioned above Kroon and Holzapfel (2007) developed aneur-
ysm model which was attractive due to its theoretical and
computational simplicity. The described works influenced further
studies in mathematical modeling of aneurysm growth: Kroon and
Holzapfel (2008; 2009); Chatziprodromou et al. (2007); Watton
et al. (2009); Figueroa et al. (2009); Watton and Hill (2009);
Schmid et al. (2010); Watton et al. (2011); and Martufi and Gasser
(2012) to list a few. Though biomechanical features of intracranial
and abdominal aortic aneurysms have differences (Humphrey and
Taylor, 2008) the mathematical grounds of the G&R description
can be common in both cases. Most mentioned theories consider
turnover of collagen fibers as the main scenario of the aneurysm
evolution.

Despite the success in describing growth and remodeling
all mentioned theories were short of a failure description that
should be a natural component of the theory. Volokh and Vorp
(2008) proposed a new paradigm of Growth–Remodeling–Failure
(G&R&F) by enforcing failure in a description of growth and
remodeling. A failure description was enforced with the help of
the energy limiter constant which provided a saturation value for
the strain energy function (Volokh, 2011; 2013). The new constant
controlled material failure and it could be interpreted as an
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average energy of molecular bonds from the microstructural
standpoint. It is especially noteworthy that the approach of energy
limiters allowed considering strength independently of stiffness.
The latter separation is critical for the aneurysm modeling where
stiffening can be accompanied by the loss of strength.1

The mentioned work by Volokh and Vorp (2008) used a purely
phenomenological approach and was not guided by micro-structural
considerations. Such considerations are taken into account in the
present work in which we hypothesize that rupture of individual
fibers (or their bonds) causes the aneurysm overall rupture. We
examine this hypothesis in computer simulations of growing aneur-
ysms in which constitutive equations describe both collagen evolu-
tion and failure. Failure is enforced in constitutive equations by
limiting strain energy that can be accumulated in a fiber. Within the
proposed theoretical framework we find a range of parameters that
lead to aneurysm rupture. We conclude in a qualitative agreement
with clinical observations that some aneurysms will rupture while
others will not.

2. Methods

Most models of aneurysm growth and remodeling that appear in the works
cited above, or the references therein, use fiber-based microstructural approaches.
Any of these models can be enhanced with a failure description in the way it is
done in the present paper. Following Humphrey and Rajagopal (2002), Baek et al.
(2006), and, especially, Kroon and Holzapfel (2007) we assume that the aneurysm
can be modeled as a membrane composed of collagen layers with the strain energy
of the ith layer prescribed in the form

ψ iðtÞ ¼
Z t

�1
gðt; tdpÞ _miðtdpÞf iðt; tdpÞdtdp ð1Þ

where _mi is the rate of the collagen fiber production; f i is the strain energy of the
deposited fiber; tdp is the time of the fiber deposition; and the life cycle function
gðt; tdpÞ is defined by the fiber life time tlf with the help of the Heaviside step
functions H as follows

gðt; tdpÞ ¼Hðt�tdpÞ�Hðt�tdp�tlf Þ ð2Þ

In order to define constitutive laws for the rate of the fiber production and the
fiber energy we have, first, to define kinematics of a fiber. We assume that M is a
unit vector in the initial configuration at time t ¼ �1 which defines direction of
fiber deposition in the ith layer. Then, at time t ¼ tdp a new fiber is deposited in
direction

Mdp ¼ FðtdpÞM ð3Þ

where FðtdpÞ is the deformation gradient mapping the initial configuration at time
t ¼ �1 to the configuration at time t ¼ tdp .

The deposited unit fiber Mdp= Mdp

�� �� is further mapped into2

m¼ Mdp

�� ���1FdpMdp ¼ Mdp

�� ���1FdpFðtdpÞM¼ Mdp

�� ���1FðtÞM; ð4Þ

where Fdp ¼ FðtÞF�1ðtdpÞ is the deformation gradient mapping material configura-
tion at the time of the fiber deposition t ¼ tdp to the current configuration at time t.

Besides kinematics we also prescribe a specific form of the
fiber strain energy function in the ith layer that enforces a failure description
(Volokh 2011, 2013).

f iðt; tdpÞ ¼ 0:1 ΦifΓ½0:1;0��Γ½0:1; ðWiðt; tdpÞ=ΦiÞ10�g ð5Þ

where Γ½s; x� ¼ R1
x ts�1expð�tÞ dt is the upper incomplete gamma function; Φi is

the energy limiter for fiber in the ith layer; and Wi is the strain energy of intact
(without failure) fiber in the ith layer.

We further specify constitutive equations as follows

Wiðt; tdpÞ ¼ μðλ2pre mj j2�1Þ3 ð6Þ

_miðtdpÞ ¼ β Mdp

�� ��2α ð7Þ

where μ is a fiber stiffness parameter; λpre is a pre-stretch of the deposited fiber;β
and α are the growth constants.

At this point the constitutive description is accomplished while a structural
description is necessary. We restrict considerations by axisymmetric membranes. A

membrane is in equilibrium when the virtual work of internal forces, δΠ1, is equal
to the virtual work of external forces, δΠ2, or

δΠ ¼ δΠ1�δΠ2 ¼ 0 ð8Þ
The virtual work of the internal forces can be calculated by varying the total strain
energy of the membrane

δΠ1 ¼ δ

Z
ψ dV ð9Þ

where ψ ¼∑iψ i is the strain energy density per unit reference volume V of the
membrane.

The virtual work of external forces is the virtual work of pressure, p,

�δΠ2 ¼ �p
Z l

0
2π rn � δx ds¼ 2πp

Z l

0
r

dz
ds
δr�dr

ds
δz

� �
ds ð10Þ

where

n¼
cos α

0
sin α

0
B@

1
CA¼

�dz=ds

0
dr=ds

0
B@

1
CA; δx¼

δr
0
δz

0
B@

1
CA ð11Þ

and s is the arc length of the membrane surface – see Fig. 1.
We note that it is possible to transform integral (10) over the current

configuration to the integral over a reference configuration by introducing the
reference arc length, S, in a way that the current arc length is a unique function of
the referential arc length: sðSÞ. After such a transformation we have

�δΠ2 ¼ 2πp
Z L

0
rðz′δr�r′δzÞdS ð12Þ

where primes designate derivatives with respect to the referential arc length and
l¼ sðLÞ.

Remarkably, it is possible to introduce the pressure potential explicitly (Fried,
1982)

�Π2 ¼
Z L

0
γðr; z′Þ dS; γðr; z′Þ ¼ pπ r2z′ ð13Þ

Indeed, varying (13) we get (12)

�δ Π2 ¼
Z L

0

∂γ
∂r
δr� ∂2γ

∂S∂z′
δz

� �
dS¼ 2πp

Z L

0
rðz′δr�r′δzÞ dS ð14Þ

Thus, equilibrium is provided by the stationary state of the total potential

Π ¼Π1�Π2 ¼
Z

ψ dVþpπ
Z L

0
r2z′ dS ð15Þ

This problem is conservative!
In the case of a membrane comprising n thin layers we can further simplify (15)

as follows:

Π ¼ π

Z L

0
2R ∑

n

i ¼ 1
hiψ iþpr2z′

 !
dS ð16Þ

where R is the referential or initial radial coordinate; hi and ψ i are the thickness and
the strain energy of the ith layer accordingly.

We can specify equations written above by describing deformation in principal
stretches

F¼ λ1τ � τ0þλ2ω � ω0þλ3n � n0 ð17Þ
where

λ1 ¼ s′¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r′2þz′2

p
; λ2 ¼

2π r
2π R

¼ r
R
; λ3 ¼

1
λ1λ2

ð18Þ

τ¼
sin α

0
� cos α

0
B@

1
CA¼

dr=ds

0
dz=ds

0
B@

1
CA;

z

0s n

dz ds

dr
r

Fig. 1. Membrane of revolution.

1 Remarkably, continuum damage mechanics theories usually describe failure
through decrease of stiffness while the aneurysms failure is accompanied by
increase of stiffness.

2 See Remark 2 below.
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