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a b s t r a c t

A new strain energy function for the hyperelastic modelling of ligaments and tendons based on the
geometrical arrangement of their fibrils is derived. The distribution of the crimp angles of the fibrils is
used to determine the stress–strain response of a single fascicle, and this stress–strain response is used
to determine the form of the strain energy function, the parameters of which can all potentially be
directly measured via experiments – unlike those of commonly used strain energy functions such as the
Holzapfel–Gasser–Ogden (HGO) model, whose parameters are phenomenological. We compare the new
model with the HGO model and show that the new model gives a better match to existing stress–strain
data for human patellar tendon than the HGO model, with the average relative error in matching this
data when using the new model being 0.053 (compared with 0.57 when using the HGO model), and the
average absolute error when using the new model being 0.12 MPa (compared with 0.31 MPa when using
the HGO model).

& 2014 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Ligaments and tendons are fundamental structures in the mus-
culoskeletal systems of vertebrates. Ligaments connect bone to bone
to provide stability and allow joints to function correctly, whereas
tendons connect bone to muscle to allow the transfer of forces
generated by muscles to the skeleton. The wide variety of roles
played by different ligaments and tendons requires them to have
considerably different mechanical responses to applied forces, and
their differing stress–strain behaviours have been well documented
(Benedict et al., 1968; Tipton et al., 1986).

Ligaments and tendons consist of collagenous fibres organised in
a hierarchical structure (Kastelic et al., 1978). Their main subunit is
the fascicle, which consists of fibrils arranged in a crimped pattern
(see Fig. 1). Further subunits in the hierarchy can be observed;
however, the mechanics on these lengthscales will not be consid-
ered here. Instead, we shall focus on the effect of the geometrical
arrangement of the fibrils within fascicles on the stress–strain
properties of ligaments and tendons.

From a modelling perspective, ligaments and tendons can be
categorised as fibre-reinforced biological soft tissues. Awide variety of
models has been proposed to describe such tissues; however, to the
author's knowledge, there has not yet been a successful attempt to

develop a constitutive model within a non-linear elastic framework
that includes the required anisotropy and characteristic stress–strain
behaviour, which is non-linear with increasing stiffness for small
strains (this region of the stress–strain curve is commonly termed the
toe region) and subsequently linear, and, crucially, depends only on
directly measurable parameters. Existing models are either phenom-
enological (Fung, 1967; Holzapfel et al., 2000), or lacking in the
required material properties (such as the neo-Hookean model, which
was developed for modelling rubber, but has still been used exten-
sively in modelling biological soft tissues Miller, 2001, 2005), or both
(Gou, 1970).

Early work on modelling biological tissue was carried out by
Fung (1967). Fung showed that the stress in rabbit mesentery under
uniaxial tension appears to increase exponentially as a function of
increasing stretch. This exponential stress–strain relationship appears
to approximate the behaviour of many biological soft tissues well, but
only in a phenomenological sense and there is no microstructural
basis for the choice of the exponential function. In 1970, Gou built
upon Fung's work and proposed an isotropic strain energy function
(SEF) for biological tissues that similarly gives an exponential stress–
strain relationship in the case of uniaxial tension, but since this model
is isotropic, it is not suitable for modelling anisotropic tissues such as
ligaments and tendons.

With regard specifically to ligaments and tendons, various models
were proposed over the following decades, as summarised in the
review article by Woo et al. (1993). The models proposed involved
infinitesimal elasticity (Frisen et al., 1969), finite elasticity (Hildebrant

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jbiomech
www.JBiomech.com

Journal of Biomechanics

http://dx.doi.org/10.1016/j.jbiomech.2014.11.031
0021-9290/& 2014 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

n Tel.: þ44 161 275 5810.
E-mail address: tom.shearer@manchester.ac.uk

Journal of Biomechanics 48 (2015) 290–297

www.sciencedirect.com/science/journal/00219290
www.elsevier.com/locate/jbiomech
http://www.JBiomech.com
http://www.JBiomech.com
http://dx.doi.org/10.1016/j.jbiomech.2014.11.031
http://dx.doi.org/10.1016/j.jbiomech.2014.11.031
http://dx.doi.org/10.1016/j.jbiomech.2014.11.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2014.11.031&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2014.11.031&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2014.11.031&domain=pdf
mailto:tom.shearer@manchester.ac.uk
http://dx.doi.org/10.1016/j.jbiomech.2014.11.031


et al., 1969), quasi-linear viscoelasticity (Fung, 1968) and single integral
finite strain viscoelasticity theory (Johnson et al., 1992). In particular,
we note the work of Kastelic et al. (1980), in which a model was
developed for the stress–strain response of a fascicle, taking into
account the distribution of fibril crimp. It was shown that a radial
variation in the crimp angle of a fascicle's fibrils could lead to a non-
linear stress–strain relationship of the form typically observed in
tension tests. Unfortunately, however, an error in the implementation
of Hooke's law in that paper led to the derived relationship being
incorrect, as we discuss further in Section 2.

Arguably the most influential model to be developed in the last
20 years for modelling biological tissues is the SEF proposed by
Holzapfel et al. (2000), often referred to as the Holzapfel–Gasser–
Ogden (HGO) model:

W ¼ c
2
ðI1�3Þþk1

k2
ðek2ðI4 �1Þ2 �1Þ; ð1Þ

where I1 and I4 are strain invariants, defined by

I1 ¼ tr C; and I4 ¼M � ðCMÞ; ð2Þ

where C¼ FTF is the right Cauchy–Green tensor, where F is the
deformation gradient tensor (Ogden, 1997), and M is a unit vector
pointing in the direction of the tissue's fibres before any deformation
has taken place, c, k1 and k2 are material parameters, and the above
expression is only valid when I4Z1 (when I4o1, W ¼ c=2ðI1�3Þ).
This SEF was proposed as a constitutive model for arteries and is
commonly used, along with its variants (Holzapfel and Ogden, 2010)
to model a wide variety of biological materials. The advantages of
this model are clear – it retains an elegant mathematical simplicity,
whilst also providing the required anisotropy and “exponential-
shaped” stress–strain curve common to many biological materials;
however, as it is a phenomenological model, the parameters c, k1
and k2 cannot be directly linked to measurable quantities, and
therefore the model has restricted predictive capabilities.

A large number of phenomenological, transversely isotropic, non-
linear elastic models of biological soft tissues have been proposed.
The following models were collated by Murphy (2013), where the
parameters ci, i¼1,2,3,4,5,6,7 are material parameters that can be
chosen to match experimental data. Humphrey and Lin (1987)
proposed this strain energy function for modelling passive cardiac
tissue:

W ¼ c1ðec2ðI1 �3Þ �1Þþc3ðec4ðI
1=2
4 �1Þ2 �1Þ: ð3Þ

Humphrey et al. (1990) proposed the following for passive myocar-
dium:

W ¼ c1ðI1=24 �1Þ2þc2ðI1=24 �1Þ3þc3ðI1�3Þþc4ðI1=24 �1ÞðI1�3Þþc5ðI1�3Þ2:
ð4Þ

Fung et al. (1993) proposed

W ¼ c1ðeT �T�1Þþc5ðI1�3Þ2þc6ðI4�1Þ2þc7ðI1�3ÞðI4�1Þ; ð5Þ

Nomenclature

W strain energy function
c, k1, k2 material parameters of Holzapfel–Gasser–Ogden

model
I1, I2 isotropic strain invariants
I4 anisotropic strain invariant
B;C left/right Cauchy–Green tensor
M;m direction of fascicles in undeformed/deformed

configuration
F deformation gradient tensor
ci phenomenological material parameters
T c2ðI1�3Þ2þc3ðI4�1Þ2þc4ðI1�3ÞðI4�1Þ
~a fascicle radius
~ρ;ρ dimensional/non-dimensional radial variable in

fascicle
θpðρÞ, θ̂pðρÞ fibril crimp angle distributions
θo, θi crimp angle of outermost/innermost fibrils
α, p crimp angle distribution parameters
ϵpðρÞ strain in fascicle as fibrils at radius ρ become taut
ϵn strain in fascicle as outer fibrils become taut
b crimp blunting factor
ϵ given strain in fascicle
Rp radius within which all fibrils are taut for a given ϵ
Pp tensile loads experienced by fascicle
σpðρÞ, ϵfpðρÞ stress/strain in fibrils at radius ρ
En Hooke's law parameter utilised by Kastelic et al.

(1980)
ΔϵpðρÞ “elastic deformation” at radius ρ
E Young's modulus of fibrils

lpðρÞ, L initial fibril/fascicle length
ΔlpðρÞ, ΔL fibril/fascicle extension
τp, τ̂p average tractions in the direction of the fascicle
λ stretch in the direction of the fascicle
β 2ð1� cos 3θoÞ=ð3 sin 2θoÞ
T, THGO Cauchy stresses
J det F
Q, QHGO Lagrange multipliers
ϕ fibre volume fraction
Tf , tf component of stress/traction associated with

fascicles
m̂ unit vector in direction of m
γ, η constants of integration, defined in Eq. (51)
μ ground state shear modulus of ligament/tendon

matrix
R, Θ, Z coordinate variables in undeformed configuration
r, θ, z coordinate variables in deformed configuration
A, a undeformed/deformed radius of ligament/tendon
B, b undeformed/deformed length of ligament/tendon
ζ stretch in longitudinal direction of ligament/

tendon
ER, EΘ, EZ basis vectors in undeformed configuration
er , eθ , ez basis vectors in deformed configuration
n outer unit normal to curved surface of ligament

or tendon
Szz, S

HGO
zz longitudinal nominal stresses

e engineering strain
δ, δHGO relative errors
Δ, ΔHGO absolute errors

Fig. 1. Tendon hierarchy (adapted from Kastelic et al., 1978).
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