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a b s t r a c t

Elastic properties of materials can be measured by observing shear wave propagation following localized,
impulsive excitations and relating the propagation velocity to a model of the material. However,
characterization of anisotropic materials is difficult because of the number of elasticity constants in the
material model and the complex dependence of propagation velocity relative to the excitation axis,
material symmetries, and propagation directions. In this study, we develop a model of wave propagation
following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle.
Wave motion is described in terms of three propagation modes identified by their polarization relative to
the material symmetry axis and propagation direction. Phase velocities for these propagation modes are
expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms
of three constants after the application of two constraints that hold in the limit of an incompressible
material. Group propagation velocities are derived from the phase velocities to describe the propagation
of wave packets away from the excitation region following localized excitation. The theoretical model is
compared to the results of finite element (FE) simulations performed using a nearly incompressible
material model with the five elasticity constants chosen to preserve the essential properties of the
material in the incompressible limit. Propagation velocities calculated from the FE displacement data
show complex structure that agrees quantitatively with the theoretical model and demonstrates the
possibility of measuring all three elasticity constants needed to characterize an incompressible,
TI material.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Physicians use manual palpation as part of the diagnostic
process because diseased tissue is often stiffer than surrounding
healthy tissue. Recently, a number of imaging methods have been
developed for characterizing tissue stiffness in vivo by exciting
shear waves in the tissue and measuring the shear wave propaga-
tion speed (Sarvazyan et al., 1998; Sandrin et al., 2003). These
systems generate shear waves in tissue using either external
mechanical excitation coupled to the body wall (Yin et al., 2007;
Huwart et al., 2006) or acoustic radiation force impulse (ARFI)
excitations to remotely palpate tissue at the focal region of an
acoustic beam (Bercoff et al., 2004; Chen et al., 2004; Nightingale
et al., 2003). Wave propagation is monitored in space and time by
a real-time imaging modality such as magnetic resonance imaging
or ultrasound tracking, and the tissue stiffness is determined
quantitatively by measuring the shear wave propagation speed.

Two elasticity constants are required to characterize a linear,
elastic, isotropic material (Lai et al., 1999). For example, the Lamé
constants λ and μ could be specified and used to calculate related
constants such as Young's modulus, bulk modulus, and Poisson's
ratio. For nearly incompressible materials such as many biological
tissues, λ and μ often differ by a factor on the order of 106, with a
corresponding difference in longitudinal and shear wave speeds of
103. Finite element (FE) models of these materials use a Poisson
ratio nearly equal to the limiting value of 0.5 which characterizes
an incompressible material (Palmeri et al., 2005). Typically, ultra-
sonic or magnetic resonance imaging methods used to track wave
propagation in these materials only attempt to measure the shear
modulus.

The characterization of anisotropic materials requires more
elasticity constants in the material model. For example, in a linear,
elastic, transversely isotropic (TI) material, a symmetry axis exists
and the material can be characterized by five elasticity constants
(Lai et al., 1999). Muscle is an example of a TI material with the
symmetry axis defined by the orientation of the muscle fibers.
Measurements of shear wave speed for propagation along
and across the muscle fibers have been reported (Gennisson
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et al., 2003; Papazoglou et al., 2006; Gennisson et al., 2010; Royer
et al., 2011). Recently, Wang et al. (2013a) have measured the
angular dependence of phase and group velocities for shear wave
propagation in muscle using 3D volumetric measurements per-
formed using a 2D matrix array (Wang et al., 2013b).

Wave propagation in anisotropic materials has been studied in
several diverse areas. One example of wave propagation in TI
materials occurs in layered media in seismology where the
symmetry axis is perpendicular to the layers (Carcione, 2001;
Tsvankin, 2001). Another example occurs in crystallography (Auld,
1990; Musgrave, 1970), where the hexagonal crystal structure has
TI symmetry.

In this study, we consider FE modeling of impulsive excitation
and wave propagation in an incompressible, TI medium. The focus
of the study centers around three primary components as follows.
First, the elasticity constants needed to describe an incompressi-
ble, TI material are identified, and FE models are constructed using
a nearly incompressible material model which preserves the
essential properties of the incompressible model. Second, the
geometrical configuration for the excitation, material symmetry
axis, and wave propagation are chosen to simulate the experi-
mental setup commonly used in ARFI excitation and ultrasonic
tracking experiments. Finally, the angular dependence of mea-
sured wave velocities is compared with theoretical predictions to
demonstrate how the elasticity constants can be determined from
experimental measurements. The results of the study demonstrate
that with an appropriate experimental configuration, it is possible
to measure all of the elasticity constants required to characterize
an incompressible, TI material such as muscle.

2. Wave propagation in an incompressible, TI medium

2.1. TI materials

In the limit of small displacements, such as those produced in
ARFI excitations, the stress–strain relationship in an anisotropic
material is linear and can be described by a generalized Hooke's
law as

sij ¼ cijklεkl ð1Þ

where cijkl are the components of a fourth-order stiffness tensor
and summation over repeated indices is implied. Symmetries of
the stress and strain tensors and the existence of a strain energy
allow the stiffness tensor to be expressed in terms of 21 indepen-
dent elements (Lai et al., 1999). Then the stress–strain relations (1)
can be written as a matrix product,
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where C is a 6�6 symmetric stiffness matrix (Lai et al., 1999).
Transversely isotropic (TI) materials possess an axis of sym-

metry Â such that reflection symmetry exists across every plane
parallel to Â and rotation symmetry exists about Â . Muscle is an
example of a TI material with the axis Â given by the direction of
the muscle fibers. These symmetries imply that five independent
elastic constants are required to specify the stiffness matrix C (Lai
et al., 1999). Relative to an x1; x2; x3 coordinate system oriented so

that x̂3 ¼ Â, C is given by (Lai et al., 1999)
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where missing elements are zero and
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C11�C12

2
: ð4Þ

For TI materials, the elements of the stiffness matrix can be
expressed in terms of Young's moduli ET and EL, Poisson's ratios
νLT and νTT , and shear moduli μT and μL where the longitudinal
(L) and transverse (T) directions are defined relative to the
material symmetry axis. In terms of the compliance matrix
S¼ C�1 (Lai et al., 1999),
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where

μT ¼
ET

2ð1þνTT Þ
: ð6Þ

2.2. Incompressible TI materials

For an incompressible material, the fractional volume change,
or dilatation e, of an infinitesimal volume subjected to stresses
must be zero. The dilatation is given by the trace of the strain
tensor (Lai et al., 1999) and can be expressed in terms of the elastic
constants using (2) and (5) as

e¼ 1
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For an incompressible material, both of the terms on the right
hand side of (7) must be zero, and the Poisson ratios satisfy two
conditions,

νTT ¼ 1� ET
2EL

ð8Þ

and

νLT ¼ 1
2: ð9Þ

These results agree with those of Papazoglou et al. (2006). Thus,
three independent elastic constants are needed to describe an
incompressible TI material compared to five constants in the
general TI case. In the following, results are expressed in terms
of the constants μT , μL, and ET=EL.

2.3. Wave dynamics

Assuming no external body forces, the acceleration of an
infinitesimal volume of material with density ρ can be expressed
using Newton's second law in terms of the displacement u

-
and the

stress gradient across the volume as (Tsvankin, 2001)

∂sij
∂xj

¼ ρ
∂2ui

∂t2
: ð10Þ
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