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a b s t r a c t

Here we extend the global, closed-loop, mathematical model for the cardiovascular system in Müller and
Toro (2014) to account for fundamental mechanisms affecting cerebral venous haemodynamics: the
interaction between intracranial pressure and cerebral vasculature and the Starling-resistor like
behaviour of intracranial veins. Computational results are compared with flow measurements obtained
from Magnetic Resonance Imaging (MRI), showing overall satisfactory agreement. The role played by
each model component in shaping cerebral venous flow waveforms is investigated. Our results are
discussed in light of current physiological concepts and model-driven considerations, indicating that the
Starling-resistor like behaviour of intracranial veins at the point where they join dural sinuses is the
leading mechanism. Moreover, we present preliminary results on the impact of neck vein strictures on
cerebral venous hemodynamics. These results show that such anomalies cause a pressure increment in
intracranial cerebral veins, even if the shielding effect of the Starling-resistor like behaviour of cerebral
veins is taken into account.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments on the potential link between extracra-
nial venous anomalies and neurological conditions have increased
interest on the physiology of cerebral venous return, currently, a
poorly understood subject (Stoquart-ElSankari et al., 2009). A
prominent example is Chronic CerebroSpinal Venous Insufficiency
(CCSVI) and its potential link to Multiple Sclerosis (MS) (Zamboni
et al., 2009). Interest in this area has been further increased by
very recent findings on altered cerebrospinal fluid dynamics in MS
patients (Magnano et al., 2012) and by reported improvements of
such dynamics, as well the clinical course of the disease, after
treatment of MS/CCSVI patients with percutaneous transluminal
angioplasty (PTA) (Zivadinov et al., 2013).

In this paper we are concerned with the development of a
mathematical model to study cerebral haemodynamics. To this
end we construct an extension of the closed-loop model for the
cardiovascular system reported in Müller and Toro (2014) to
account for two relevant factors. First we deal with the interaction
of the cerebral vasculature with the pulsating intracranial pres-
sure, for which we adopt the model proposed in Ursino (1988) and
Ursino and Lodi (1997); this model describes the variation of

intracranial pressure in time in terms of the variation of cerebral
blood volume. Second, we incorporate a model to account for the
Starling-resistor like behaviour of cerebral veins. This is supported
by experimental evidence that shows that pressure in cerebral
veins is always higher than intracranial pressure, for a wide range
of intracranial pressures, independently of the pressure in down-
stream vessels, such as the dural sinuses (Johnston et al., 1974;
Luce et al., 1982). The underlying mechanism is still the subject of
debate, with some researchers speaking in favour of a purely
hydraulic mechanism (Anile et al., 2009) and others hypothesizing
a control mechanism (Dagain et al., 2009). Moreover, there is
evidence of distinct morphological and mechanical properties of
the terminal portion of cerebral veins, in the vicinity of dural
sinuses (Vignes et al., 2007; Dagain et al., 2008, 2009; Chen et al.,
2012). In order to model this behaviour, we have added cerebral
veins to the venous network in Müller and Toro (2014) and
implemented a simple model for Starling-resistor elements, pro-
posed in Mynard (2011). These elements are placed in the vicinity
of the point where cerebral veins drain into the dural sinuses. Our
model is partially validated by comparing our computational
results with MRI-derived flow measurements, obtaining satisfac-
tory agreement. Computational results are discussed in light of
current knowledge of the physiology of cerebral venous haemo-
dynamics. As an example, we include here some preliminary
results on the impact of neck vein strictures on cerebral venous
haemodynamics. These results show that such anomalies cause a
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pressure increase in intracranial cerebral veins. The proposed
mathematical model constitutes a computational tool suitable
for the study of pathologies related to extracranial venous anoma-
lies and their interaction with intracranial haemodynamics. This
will be the subject of future investigations.

The rest of the paper is structured as follows. Section 2
describes the extensions made to the model reported in Müller
and Toro (2014). Section 3 contains computational results, com-
parison with MRI-derived measurements and a discussion of
computational results. Section 4 contains an example to illustrate
the applicability of the present model, while Section 5 includes a
summary and conclusions.

2. Methods

The model presented in this paper is an extension of the closed-loop model for
the cardiovascular system presented in Müller and Toro (2014) to which the reader
is referred to for further details.

2.1. Mathematical model of the cardiovascular system

Our mathematical model includes a one-dimensional description of the net-
works of major arteries and veins, and lumped-parameter models for the heart, the
pulmonary circulation and capillary beds linking arteries and veins, see Fig. 1.
Geometrical information for major head and neck veins is obtained from segmen-
tation of MRI data. This patient-specific characterization allows us to compare
computational results versus patient-specific MRI-derived flow quantification data,
see Müller and Toro (2014).

One-dimensional blood flow in elastic vessels is described by the following
system of non-linear, first-order hyperbolic equations:

∂tAþ∂xq¼ 0;

∂tqþ∂x α̂
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here x is the axial coordinate of the vessel; t is the time; Aðx; tÞ is the cross-sectional
area of the vessel; qðx; tÞ is the flow rate; pðx; tÞ is the average internal pressure over
a cross-section; f ðx; tÞ is the friction force per unit length of the tube; ρ is the fluid
density and α̂ is a coefficient related to the assumed velocity profile. In what
follows we assume ρ¼constant and α̂ ¼ 1 (blunt velocity profile). To close the

system we adopt a tube law relating pðx; tÞ to Aðx; tÞ and other parameters, namely

pðx; tÞ ¼ peðx; tÞþKðxÞ Aðx; tÞ
A0ðxÞ
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A0ðxÞ
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here peðx; tÞ is the external pressure. K(x), m, n, A0ðxÞ and P0 are parameters that
account for mechanical and geometrical properties of the vessel. For a discus-
sion on the choice of these parameters for both arteries and veins, see Müller
and Toro (2014) and references therein. Fig. 1 depicts a schematic representation
of the global model. Fig. 2 shows the venous network for the head and neck used
here. Cortical cerebral veins draining into the superior and inferior sagittal
sinuses have been added to the venous network in Müller and Toro (2014). Note
that there is high variability in the number of veins draining into the superior
sagittal sinus; our choice is in line with the numbers reported in Vignes et al.
(2007). Moreover, a Starling-resistor element was added to the end of each
cerebral vein (see Section 2.3). Table 1 shows geometrical and mechanical
properties of vessels added or changed with respect to the venous network of
Müller and Toro (2014). As a consequence of the venous network extension, the
lumped-parameter compartment linking middle and anterior cerebral arteries
to the inferior and superior sagittal sinuses has also been modified. The new
configuration of this lumped compartment is shown in Fig. 3 and coefficients for
lumped elements are found in Table 2.

2.2. Intracranial pressure

The cranial cavity is conventionally regarded as a space of fixed volume containing
the brain parenchyma, the cerebrospinal fluid (CSF) and the cerebral vasculature. The
cranial cavity is then connected to the spinal cavity, which exhibits elastic behaviour,
allowing for volume changes. Variations in intracranial blood volume produce fluctua-
tions of intracranial pressure and, consequently, exchange of CSF between the
intracranial and spinal subarachnoid spaces. For intracranial pressure pic, here we adopt
the model proposed in Ursino (1988) and Ursino and Lodi (1997) given by

Cic
dpic
dt

¼ dVcv

dt
þpc�pic

Rf
�pic�psss

R0
; ð3Þ

here pc and psss are capillary and superior sagittal sinus pressures, respectively. Vcv

is the volume of the cerebral vasculature, given by the sum of the volume occupied
by arteries, arterioles, capillaries, venules and veins inside the cranium. Cic is the
intracranial compliance, given as

Cic ¼
1

kepic
; ð4Þ

where ke is the elastance coefficient of the craniospinal system. Here we use
ke ¼ 0:15 ml�1 (Ursino, 1988). Rf and R0 are CSF filtration and re-absorption
resistances. CSF filtration from the subarachnoid space towards the dural sinuses

Fig. 1. Global, closed-loop model in Müller and Toro (2014). Major arteries and veins are modelled one-dimensionally; lumped-parameter models are used for heart,
pulmonary circulation, arterioles, capillaries and venules. Left frame: major arteries; middle frame: lumped-parameter models; and right frame: major veins.
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