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a b s t r a c t

The speed of a competitive rowing crew depends on the number of crew members, their body mass, sex
and the type of rowing—sweep rowing or sculling. The time-averaged speed is proportional to the
rower's body mass to the 1/36th power, to the number of crew members to the1/9th power and to the
physiological efficiency (accounted for by the rower's sex) to the 1/3rd power. The quality of the rowing
shell and propulsion system is captured by one dimensionless parameter that takes the mechanical
efficiency, the shape and drag coefficient of the shell and the Froude propulsion efficiency into account.
We derive the biomechanical equation for the speed of rowing by two independent methods and further
validate it by successfully predicting race times. We derive the theoretical upper limit of the Froude
propulsion efficiency for low viscous flows. This upper limit is shown to be a function solely of the
velocity ratio of blade to boat speed (i.e., it is completely independent of the blade shape), a result that
may also be of interest for other repetitive propulsion systems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The speed of a competitive rowing crew depends on the
number of crew members, their body mass, sex and the type of
rowing—sweep rowing or sculling. Since there are boats with 1, 2,
4, or 8 crew members there are in theory 32 rowing classes as
shown schematically in Fig. 1.

Our objective is to derive and validate a general biomechanical
equation for the time-averaged speed of rowing by taking into
account the metabolic rate of the rower and all relevant loss
mechanisms. The equation accounts for the number of crew
members n (i.e., the number of prime movers), the body mass of
the competitive rower m, the propulsion type (either sweep
rowing or sculling), and the gender of the rowing crew. The
literature survey is presented according to the four possible
approaches that are found there: (1) empirical research; (2)
detailed physical modeling; (3) time-averaged energy balance in
integral form; and (4) dimensional analysis.

We use the independent approaches (3) and (4) to derive the
same equation for the speed of rowing, whereas most research on
the biomechanics of rowing has followed the first two approaches
(Affeld, et. al., 1993; Kleshnev, 1999; Cabrera, et. al., 2006). There is
no research on the influence of body mass on the boat speed. A
dimensional analysis (McMahon, 1971) that takes the geometric

similarity of the shells for different rowing classes into account
yields the 1/9th power law for the relation between speed and
number of rowers. For a dimensional analysis, it is typical only to
consider continuous scales and magnitudes. In contrast, we apply
the methods of dimensions, as Rayleigh described it (Rayleigh,
1877), to discrete variables, such as the number n of crew
members. Here, we define a discrete measure N and require scale
invariance, i.e. Bridgman's postulate (Bridgman, 1922), also for the
number of crew members (Barenblatt, 2003). Although rowing is a
biomechanical system, the prime mover (i.e. the oarsmen and, in
particular, his or her weight), has been thus far left out of
the equation. It is one of our main objectives to determine the
dependency of the body mass of the competitive rowers on
the average boat speed. The influence of the mass is twofold. On
the one hand, due to allometric scaling, the input power increases
with body mass to the power of 3/4th according to Kleiber's law
(Kleiber, 1932 and 1975) and, in fact, we validate Kleiber's law for
heavyweight and lightweight, male and female crews. On the
other hand, as body mass increases, the shell surface increases due
to Archimedes’ law. This results in an increase in frictional drag. As
will be seen, for a competitive rower, boat speed increases with
body mass only to the power of 1/36th.

The outline of the paper is as follows. We first derive the
equation for the speed of rowing and show the scale invariance of
rowing. The identical result is then achieved independently by
means of an energy balance for rowing that is analogous to
Lighthill's analysis of fish movement (Lighthill, 1960). In the
Section 3 "Validation of Allometric Scaling of Rowing", we confirm
Kleiber's law by analyzing race times of winning crews at world
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cup and Olympic regattas. In the final section 4 we use our results
to predict the boat speed of various rowing classes at major
regattas and validate the predictions.

2. Scale invariance and speed of rowing

There are three types of similarity and scaling: (1) geometric
similarity/scaling; (2) physical similarity/scaling; and (3) allo-
metric similarity/scaling. Geometric similarity is a special form of
physical similarity based on Bridgman's postulate (Bridgman,
1922). Kleiber's law (Kleiber, 1932 and 1975), i.e. the metabolic
rate and hence the mechanical power of an organism is propor-
tional to its body mass raised to the power of 3/4th is an allometric
scaling. This empirical relationship has been found to hold across
the living world from bacteria to blue whales. Today, it is agreed
that the 3/4th power can be explained by the specific geometry
(West, et. al., 1999) or type (Banavar, et. al., 1999) of the metabolic
networks, such as the geometry and topology of blood vessels. As
far as we know there is no research on allometric scaling in
rowing. As will be seen, combining all three scaling and similarity
methods will lead us to the desired speed of rowing.

McMahon, (1971) was the first to notice the geometric simi-
larity in rowing. For a shell, the most relevant geometric data are
boat length L, surface area A : ¼ κ2AL

2, shell width B : ¼ κBL; and
displaced water volume V : ¼ κ3VL

3: The shape factors κA; κB; κV are
given in Table 1 for 23 different rowing classes. The shape factors
show a maximum relative standard deviation of 3.7%. The first
requirement of any shell is to support the weight of the crew. This
is described by a force balance of the buoyancy (proportional to
the water density ϱ) and the total weight of crew, cox, and shell
according to Archimedes' principle. The ratio of the crew's total
weight without cox to the overall weight including cox and boat,
defined by κM : ¼ nm=ϱV is 19%, with a relative standard deviation
of 20%. This large variance is of only minor importance, since the
dimensionless, volume-specific surface of the shell, defined by

κ : ¼ A

ðVκMÞ2=3
¼ κ2A
κ2Vκ

2=3
M

; ð1Þ

fully accounts for the shell's drag. It is equal to 12.09, with a
relative standard deviation of only 4.9%. Since κ is nearly constant,
the surface area scales to the power 2/3 with the number of
oarsmen and body mass:

A¼ κðVκMÞ2=3 ¼ κðnm=ϱÞ2=3: ð2Þ
Along with the geometric similarity, there is a physical similarity for
the shell's drag for all rowing classes: The time-averaged drag
force of the shell D (time average is indicated by an over bar)
depends on the speed of rowing v relative to calm water, the

density ϱ and kinematic viscosity ν of water, the specific gravity
constant g, the stroke rate 1=τ, and the shape of the shell, which is
the same for all rowing classes due to the discussed geometric
similarity: D¼Dðϱ; v;A;ν; g; τ; shapeÞ. This equation remains the
same, regardless of which fundamental units (Rayleigh, 1877;
Bridgman, 1922) are used to express the 7 quantities. Since this
is a dynamic problem, the fundamental dimensions of length,
mass, and time ½LMT �, or their equivalents length, force, and time
½LFT�; are used preferentially. Due to the required scale invariance,
the relation can be expressed equivalently using only 4 dimension-
less parameters:

cD ¼ cDðRe; Fr ; λ; shapeÞ; ð3Þ
where cD : ¼ 2D=ðϱv2AÞ is the drag coefficient, Re : ¼ vL=ν is the
Reynolds number, Fr : ¼ v=

ffiffiffiffiffi
gL

p
is the Froude number, and

λ : ¼ v=u¼ v=Ωl (Ω¼ 2π=τ, outboard length l) is the dimension-
less boat speed known as advance ratio (Newmann, 1977). The
drag coefficient is nearly constant for all rowing classes
ð2:657 :15Þ� 10�3 (Mang, 2008). Thus, competitive rowing hulls
exhibit not only geometrical similarity, but also an approximate
physical similarity.

For the moment, we assume (to be validated in Section 3) that
the mechanical power P0 of competitive rowers—whether light-
weight or heavyweight, male or female—scales with their body
masses m according to Kleiber's allometric scaling law (Kleiber,
1932 and 1975)

P0 ¼ εm3=4 : ð4Þ
Since ε is a measure of the physiological quality of the rower, it is
justified to name it physiological efficiency. Since P0 and m are
rower-specific physical quantities, we introduce a dimension N to
account for the number of oarsmen n. The scale can either be one
rower or two rowers, counting in units of one, two, or more.
Hence, together with the dimensions for dynamic systems length
L, mass M, and time T , the suitable fundamental system of
dimensions is ½LMTN�. With the above-discussed physical similar-
ity accounting for the shell's drag, the speed of rowing can be
reduced to a function of the following dimensional quantities: The
physiological efficiency ε and body mass m of the rower, the water
density ϱ, and the number of crew members n:

v¼ vðε; m; ϱ; nÞ: ð5Þ
This equation must remain unchanged, regardless of the funda-
mental units used to express the five quantities. Bridgman's
postulate, i.e. “the absolute meaning of relative quantities”
(Bridgman, 1922), results in the scale invariance of Eq. (5). Hence,
v¼ vðε; m; ϱ; nÞ is equivalent to a single dimensionless product
Π ¼ const. The dimension of speed is given by ½v� ¼ L1T �1, that of
density, by ½ϱ� ¼M1L�3. Since mass and physiological efficiency

Fig. 1. There are in theory 32 possible rowing classes (neglecting cox) which differ in gender, body mass, propulsion type, number of crew members resulting in different
average boat speed.
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