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a b s t r a c t

Hill-type muscle models are commonly used in biomechanical simulations to predict passive and active
muscle forces. Here, a model is presented which consists of four elements: a contractile element with
force–length and force–velocity relations for concentric and eccentric contractions, a parallel elastic
element, a series elastic element, and a serial damping element. With this, it combines previously
published effects relevant for muscular contraction, i.e. serial damping and eccentric force–velocity
relation. The model is exemplarily applied to arm movements. The more realistic representation of the
eccentric force–velocity relation results in human-like elbow-joint flexion. The model is provided as
ready to use Matlab s and Simulink s code.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hill-type muscle models are commonly used in biomechanical
simulations to predict passive and active muscle forces during
various movements. They predict muscle forces on an organ level
and are therefore considered macroscopic muscle models. In
mechanics, Hill-type muscle models are classified as 0-d elements
due to the lack of mass and inertia. Such a model's output is a one-
dimensional force, which is applied to skeletal models between
origin and insertion points, or sometimes as moments by means of
(constant) lever arms. The models’ inputs are muscle length, or more
precisely muscle–tendon-complex (MTC) length, MTC contraction
velocity, and neural muscle stimulation. Typically, Hill-type muscle
models consist of three elements: a contractile element incorporat-
ing force–length and force–velocity dependencies, a serial and a
parallel elastic element in diverse configurations (Zajac, 1989;
Winters, 1990; van Soest and Bobbert, 1993; Günther and Ruder,
2003; Houdijk et al., 2006; Kistemaker et al., 2006; Siebert et al.,
2008). Various extensions account for physiologically observable
effects, such as contraction history effects (Meijer et al., 1998; Rode
et al., 2009; McGowan et al., 2013), recruitment patterns of slow- and
fast twitch fibers (Wakeling et al., 2012), high frequency oscillation
damping (Günther et al., 2007; Siebert et al., 2003), or force in

eccentric contractions (van Soest and Bobbert, 1993; Cole et al., 1996;
Till et al., 2008). The model presented here combines the latter two.

In eccentric contractions the muscle is elongated due to external
forces exceeding the force the muscle is currently generating. In
contrast to the extensively studied concentric contractions, con-
siderably less data has been published on eccentric contractions –

presumably due to the experimental difficulties. It has, however,
been observed that during eccentric contractions single muscle
fibers and whole muscles produce forces exceeding those of
isometric (at constant length) contractions (Katz, 1939; Joyce and
Rack, 1969; Rijkelijkhuizen et al., 2003; Till et al., 2008). Further-
more, the eccentric muscle force depends on the contraction
velocity. For small lengthening velocities, the force rapidly increases
with increasing velocities (Katz, 1939; Joyce and Rack, 1969;
Rijkelijkhuizen et al., 2003; Till et al., 2008). For higher lengthening
velocities (where the experimental difficulties increase, e.g., due to
fiber damage) some studies report force saturation (Joyce and Rack,
1969), a slower increase in force (Till et al., 2008), or even a slow
reduction with increasing lengthening velocity, depending on the
experimental setup. van Soest and Bobbert (1993) proposed a
muscle model where the eccentric force–velocity relation is
described by a hyperbolic relation. The advantages of this approach
are the possibility to use similar equations for concentric and
eccentric force–velocity relation and the good approximation of
the experimental data.

The biomechanical function of the eccentric force–velocity
relation has also been examined. Seyfarth et al. (2000) showed
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in a simulation study that the jumping performance of long jumps
is greatly influenced by the eccentric force–velocity relation. Here,
a key feature is the relatively low metabolic energy required for
relatively high eccentric forces (Lindstedt et al., 2001). Also, the
increased muscle force in eccentric contractions together with
the reduced force in concentric contractions can have an effect
similar to a mechanical damper. With this, the muscle can
dissipate movement energy, e.g. during down-hill walking
(Lindstedt et al., 2001), and provide rapid stabilizing reactions to
perturbations in hopping (Haeufle et al., 2010).

Günther et al. (2007) found that the low but significant damping
within the passive tendinous tissue (Ker, 1981; Alexander, 2001)
is responsible for the dampening of high-frequency oscillations.
Considering such a damping in the series elastic structure of a Hill-
type muscle model predicts muscle forces more realistically. Other-
wise, unrealistic high frequency oscillations may occur when
simulating contractions against a mass (Günther et al., 2007).

For complex biomechanical simulations of human movement,
both series elastic damping and the characteristic eccentric force–
velocity relation have to be considered. Here, we propose a
Hill-type model based on van Soest and Bobbert (1993), Günther
et al. (2007), and Mörl et al. (2012), which models both effects.
Furthermore, we propose a robust method to find the initial
conditions for the muscle model's internal state. With these
extensions, the muscle model can be used in multi-body simula-
tions of many different human and animal movements. We
provide the model implemented in Matlab s/Simulink s as
electronic supplementary material and hope that this facilitates
the biomechanical research on biological movement.

2. Muscle model

The model of the muscle tendon complex (MTC) consists of
four elements (see Fig. 1): the contractile element (CE) modeling
the active force production, the parallel elastic element (PEE)
arranged in parallel to the CE, the serial elastic element (SEE) in
series to the CE (length lSEE), and the serial damping element (SDE)
in parallel to the SEE. The four elements fulfill the force equili-
brium:

FCEðlCE ; _lCE ; qÞþFPEEðlCEÞ ¼ FSEEðlCE ; lMTC ÞþFSDEðlCE ; _lCE ; _lMTC ; qÞ: ð1Þ
In this equation, the force dependencies are also specified. l and _l
with the respective subscripts symbolize length and contraction
velocity of the respective elements. q0rqr1 represents the
muscles activity with q¼ q0 ¼ 0:001 for minimally activated
muscle and q¼1 for maximally activated muscle. The lower limit
q040 captures the fact that in a whole muscle with it's vast
number of contractile proteins some cross bridges will always
generate force even in the absence of neural stimulation. Addi-
tionally, the model's equations generate a singularity for q¼0 –

the lower limit is thus a precondition for the simulation. The
elements’ forces in Eq. (1) will be explicitly formulated in the
following paragraphs. The kinematic relations between the ele-
ments are lSEE ¼ lSDE , lPEE ¼ lCE , and lMTC ¼ lSEEþ lCE .

2.1. Contractile element CE

The contractile element CE represents the active fiber bundles
in the muscle. The CE force depends on the current length of the
muscle fibers. This force–length relation (Fig. 2) is modeled as

FisomðlCEÞ ¼ exp � lCE=lCE;opt�1
ΔWlimb

����
����
νCE;limb

� �
ð2Þ

Here, lCE;opt is the optimal fibre length for which FisomðlCE;optÞ
reaches a maximum. ΔWlimb depicts the width of the normalized
bell curve in the respective limb (ascending or descending) and
νCE;limb its exponent.

Furthermore, the CE force depends on the current fiber con-
traction velocity _lCE (with _lCEo0 for concentric contractions,
indicated by the index “c”). This force–velocity relation (Hill,
1938) is modeled as a hyperbola (see Fig. 3a):

FCE;cð_lCEr0Þ ¼ Fmax
qFisomþArel

1�
_lCE

BrellCE;opt

�Arel

0
BBB@

1
CCCA: ð3Þ

The parameters Arel and Brel are the normalized Hill “parameters”
(Hill, 1938). Fmax is the maximum isometric force.

As shown by experiments and previously described (Winters,
1990; van Soest and Bobbert, 1993; Günther et al., 2007), the Hill
parameters depend on length lCE and activation q: ArelðlCE ; qÞ ¼
Arel;0LArel

ðlCEÞQArel
ðqÞ and BrelðlCE ; qÞ ¼ Brel;0LBrel ðlCEÞQBrel

ðqÞ. The depen-
dencies are modeled as

LArel
ðlCEÞ ¼

1; lCEo lCE;opt
FisomðlCEÞ; lCEZ lCE;opt

(
ð4Þ

LBrel
ðlCEÞ ¼ 1: ð5Þ

and

QArel
ðqÞ ¼ 1

4 ð1þ3 qÞ ð6Þ

QBrel
ðqÞ ¼ 1

7 ð3þ4 qÞ: ð7Þ
In the previously published versions of this model (Günther et al.,

2007; Mörl et al., 2012), the force–velocity relation as described
above was not explicitly modeled for eccentric contractions (_lCE40,

Fig. 1. The structure of the MTC model. lMTC is the sum of the length of the
contractile element (CE) lCE plus the length of the serial elastic element (SEE) lSEE.
The length of the parallel elastic element (PEE) equals lCE. The serial damping
component SDE was introduced by Günther et al. (2007).

Fig. 2. Force–length relation of the contractile element (CE, solid line) and the
parallel elastic element (PEE, dashed line) starting at 0:95 � lCE;opt .
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