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a b s t r a c t

This paper presents a mathematical model for the propagation of errors in body segment kinematics to
the location of the center of rotation. Three functional calibration techniques, usually employed for the
gleno-humeral joint, are studied: the methods based on the pivot of the instantaneous helical axis (PIHA)
or the finite helical axis (PFHA), and the “symmetrical center of rotation estimation” (SCoRE). A
procedure for correcting the effect of soft tissue artifacts is also proposed, based on the equations of
those techniques and a model of the artifact, like the one that can be obtained by double calibration.
An experiment with a mechanical analog was performed to validate the procedure and compare the
performance of each technique. The raw error (between 57 and 68 mm) was reduced by a proportion of
between 1:6 and less than 1:15, depending on the artifact model and the mathematical method. The best
corrections were obtained by the SCoRE method. Some recommendations about the experimental setup
for functional calibration techniques and the choice of a mathematical method are derived from
theoretical considerations about the formulas and the results of the experiment.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The correct location of joints is crucial in many kinematic and
kinetic analyses of human motion. This problem may be solved by
predictive methods, based on the position of visible anatomical
landmarks and regression equations, or by functional calibration
techniques (FCT) that infer the joint position by analyzing a set of
planned gestures (Della Croce et al., 2005). FCT are often preferred
when the kinematic model chosen for the joint is a good approxima-
tion to reality and the range of motion is wide enough to ensure high
accuracy. These two conditions are met by some human joints, most
notably the hip and gleno-humeral joints, which may be modeled as
“ball-and-socket” articulations and have the greatest ranges of
motion (Cereatti et al., 2010; Karduna et al., 1996).

There is, however, controversy about the optimal mathema-
tical approach to FCT. For the gleno-humeral joint in particular
(GHJ), the International Society of Biomechanics (ISB) recom-
mended calculating the pivot point of the instantaneous helical
axes (Wu et al., 2005). A variation based on finite helical axes, to

avoid inaccuracies and other problems in the derivation of
velocities, has also been suggested (Halvorsen et al., 1999;
Monnet et al., 2007). But in their comprehensive review, Ehrig
et al. (2006) recommended the SCoRE method for estimating
centers of rotation (CoR), on the basis of their results with
numerical simulations. After that, others have compared the
accuracy and repeatability of these methods applied to the GHJ,
with diverging results (Lempereur et al., 2010; Monnet et al.,
2007; Nikooyan et al., 2011).

This apparent inconsistency suggests that no method is generally
superior, so it is necessary to take into account the nature of potential
errors that may affect the calculation of CoR, and how they are
propagated by each method, before choosing a specific procedure.
Many evaluations of FCT have been done with simulations that added
random noise to a theoretical motion (Camomilla et al., 2006; Ehrig
et al., 2006, 2011), but such simulations do not provide an adequate
representation of actual errors in FCTs (Sangeux et al., 2011). Such
errors are chiefly due to soft tissue artifacts (STA), which are
simulated in some cases as “continuous noise” signals, with sinusoi-
dal or Gaussian motions added to marker positions (Begon and
Lacouture, 2005; Begon et al., 2007), although STA do not generally
follow those patterns (Cerveri et al., 2005). Other simulations use
real motion patterns of individual markers that have been
observed in previous studies (Halvorsen et al., 1999), or measured
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in a deformable mechanical analog (MacWilliams, 2008). However,
real STA patterns can be modeled with fewer variables and indepen-
dently of specific marker configurations, taking into account that the
kinematic calculations are only affected by the rigid motion compo-
nent, which is usually a function of the motion cycle (De Rosario
et al., 2012).

The possibility of modeling STA as a function of joint kine-
matics (Camomilla et al., 2013) provides the opportunity of
attempting their correction. This idea is the basis of techniques
like the double calibration, whereby the motion of markers in the
bone frame is linearly interpolated between previously measured
positions at the ends of the motion cycle (Cappello et al., 2005;
Brochard et al., 2011). The objective of this paper is to apply that
idea to FCT, disentangling the underlying mathematics and defin-
ing formulas to correct CoR errors from STA models. Those
formulas, validated with real data from a mechanical analog, are
presented as the basis for informed decisions about what method
may be more adequate in different situations, and strategies to
reduce it.

2. Material and methods

2.1. Mathematical methods

Three different ways of calculating the CoR were considered. The supplemen-
tary material contains some mathematical proofs of the statements that are
succinctly presented in this section.

To simplify the calculations, the proximal segment was considered to be fixed,
so that all the kinematic variables represent the relative motion of the distal
segment, as seen in the proximal reference frame. Quaternions were preferred to
other ways of representing rotations like matrices, Euler angles or orientation
vectors, because they allowed more compact mathematical models of CoR errors,
although it would be possible to derive such models from any other representation.
For any unit quaternion, its complex vector and real scalar components,
qvt ¼ qxiþqyjþqzk and qwt respectively, were defined by the rotation angle θt

and the direction of the helical axis et as follows (Chou, 1992):

qvt ¼ sin
θt

2

� �
et ; qw ¼ cos

θt

2

� �
ð1Þ

The formulas for calculating the CoR presented in the following subsections include
two special matrices. The skew-symmetric matrix S af g and the symmetric matrix
P af g (where a is any column vector), which respectively define the cross product of
a with another column vector, and the orthogonal projection on the plane normal
to a, scaled by the squared norm of that vector:
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0 �az ay
az 0 �ax
�ay ax 0

0
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2.1.1. Pivot of instantaneous helical axis (PIHA)
The method recommended by the ISB consists of calculating all the locations of

the instantaneous helical axis during the calibration movements and finding the
nearest point to them (Woltring, 1990). This is equivalent to solving the following
matrix equation:

∑
t
Pfntg

� �
rC ¼∑

t
SfntguOt ; ð4Þ

where rC is the position of the CoR, nt is the unit vector of the angular velocity wt ,
and uOt is the velocity at the origin “normalized” by the amount of angular
velocity, i.e:

nt ¼ wt

jwt j
ð5Þ

uOt ¼
vOt

jwt j
ð6Þ

Since errors are very sensitive for low angular velocities, the frames where wtj j
is lower than 0.25 rad/s are usually discarded (Monnet et al., 2007; Stokdijk et al.,
2000).

2.1.2. Pivot of finite helical axes (PFHA)
The second method is a variant of the former, where the target point is the

pivot of the finite helical axis (FHA), calculated from the displacement of skin
markers with respect to a fixed, reference position (Woltring, 1985). It is often used
to calibrate the hip joint center, but has also been applied to the GHJ (Lempereur
et al., 2010). A weighting factor equal to sin 2ðθt=2Þ may be used for an optimal
compensation of small rotation errors (Ehrig et al., 2006). Using quaternions and
the translation of the origin dOt , the PFHA equation with this weighting factor is
similar to (4):

∑
t
Pfqvtg

� �
rC ¼∑

t
ðqwtS qvt

� �þP qvt

� �ÞdOt

2
; ð7Þ

2.1.3. SCoRE
The SCoRE method does not look for a fixed point, but a pair of points, one of

each linked segment, that keep a minimal distance during the motion, such that the
CoR is defined as the midpoint between them. The original equation defined by
Ehrig et al. (2006) may be rewritten as a function of the vectors and matrices
described above:

∑
t

Pfqvtg �qwtS qvt

� �
qwtS qvt

� �
T qt

� � ! !
rC
ΔC

 !
¼∑

t

qwtS qvt

� �þP qvt

� �
qwtS qvt

� ��T qt

� � !
dOt

2
ð8Þ

where ΔC is the vector that defines the distance between the two points, and T qt

� �
is defined for the quaternion qt as:

Tfqtg ¼ I�Pfqvtg ¼ q2wtIþqvt q
T
vt ð9Þ

2.1.4. Error estimation
If the CoR position were known beforehand, and the origin of coordinates were

located at that point, rC , uOt , and dOt would ideally be null. Thus, in the presence of

Nomenclature

aT transpose of vector a (row vector)
dXt displacement of point X
et direction of the finite helical axis (unit vector)
gt position vector of the marker cluster center
I identity matrix
nt direction of angular velocity/instantaneous helical axis

(unit vector)
PfUg; SfUg; TfUg matrix operators—see definitions in (2), (3),

and (9)
qt ¼ qwtþqvt quaternion (scalar and complex vector

components)

Rt rotation matrix
rC position vector of the center of rotation
t instant of time
wt angular velocity
uXt normalized velocity at point X (divided by |wt|)
vXt velocity at point X
δa error (artifact) of the variable a
θt rotation angle
θt orientation vector ð ¼ θtetÞ
ξ phase variable
Ωt Rodrigues vector ð ¼ tan ðθt=2ÞetÞ
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