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a b s t r a c t

Major joints, such as the knee, shoulder, and spine, can buckle along the translational degrees-of-freedom
(DoF), causing injury to ligaments and other passive tissues. Despite this, stability and impedance analyses
have focused primarily on the rotational DoF. As such, mathematical models quantifying musculotendon
translational stiffnesses remain limited and, to our knowledge, there are no published works that explicitly
describes the interactions between DoF. Using an energy approach, we derived a six DoF stiffness tensor and
provided the necessary equations needed to quantify the musculotendon stiffness of any joint. Using a knee
model, we then compared the derived stiffness tensor against two commonly used measures: one that
excludes translational DoF and another that excludes interactions between DoF. We found that both of these
measures had large over-estimations of stiffness, particularly for the rotational DoF, compared to our derived
tensor. These findings indicate that previous analyses may have found rotational DoF to be stable when they
were unstable.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Both joint stability (Bergmark, 1989; Crisco and Panjabi, 1991;
Cholewicki and McGill, 1996; Potvin and Brown, 2005) and joint
impedance (Hogan, 1984; Lee et al., 2011) analyses depend on the
quantification of joint stiffness. Although, all human joints have six-
degrees-of-freedom (DoF)—three rotational and three translational,
almost all research implementing these analyses have focused solely
on the rotational DoF and do not include the translational DoF.
Without any loading, the knee, shoulder, and spine translate an
average of 8.7 mm (Walker et al., 1988), 1.9 mm (Graichen et al.,
2000), and 1.4 mm (Boden and Wiesel, 1990), respectively, during
passive motion. With larger shearing forces, these joints can translate
much further, potentially causing passive tissue damage or joint
dislocation (Fleming et al., 1993; Lippitt et al., 2003; Howarth, 2011).
Despite strong empirical evidence suggesting that muscles can provide
joint stiffness and prevent translational motion (Hirokawa et al., 1991),
there have been limited attempts to quantify muscular translational
stiffness (Oosterom et al., 2003; Cashaback et al., 2013). Furthermore,
while mathematical models have included interactions between rota-
tional DoF (Crisco and Panjabi, 1991; Cholewicki and McGill, 1996),
we are unaware of any work that explicitly defines the interactions
between DoF. Given the importance of joint stability, further work is

needed to rigorously define the musculotendon stiffness matrix (i.e.,
stiffness tensor) for all six DoF.

In this short communication, we derive the explicit equations
for a tensor that can be used to quantify the musculotendon joint
stiffness. Using the knee joint as an example, we will demonstrate
the importance of including all six DoF and their interactions
when quantifying musculotendon joint stiffness, by comparing the
results to previous analysis methods.

2. Methods

By modeling an individual musculotendon unit as a spring, we can define its
energy storage (Cholewicki and McGill, 1996) as

ui ¼ f iδli þ 1
2kiδl

2
i ; ð1Þ

where ki, fi, ui, and δli , represent some individual musculotendon's short-range stiff-
ness (N/mm), force (N), stored elastic energy (J) and change in length, respectively,
along its line-of-action (LoA). To determine δli , we must geometrically define the
muscle length prior to (l0) and following (l1) a virtual displacement, which is an
infinitesimal positional change with time being held constant. Fig. 1a and b,
respectively, shows a pure translational and rotational displacement of a muscle
coordinate (A; insertion) to a new position ðA′Þ, relative to muscle coordinate
(B; proximal node).

For the example shown in Fig. 1a, the coordinate A' can be calculated as
the original muscle coordinate AðAx ;Ay ;AzÞ plus a translation (x) along the x-axis.
This can be summarized in parametric form as ðAx′;Ay′;Az′Þ ¼ ðAx þ x;Ay;AzÞ ¼
ðAx ;Ay;AzÞ þ ðx;0;0Þ. For the pure rotational virtual displacement, it is sufficient to
assume that the movement from A to A′ is linear and tangential to the path of the
circle arc (Fig. 1b). Furthermore, it is sufficient to assume that the virtual distances
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traveled along the tangent and circle arc are equal in magnitude (i.e., δθ � OA�!� δα).
To define s!, we take the cross product of vectors OA

�!
and z!, where z!ð0;0;1Þ is a

standard basis vector along the z-axis, and then add OA
�!

. The cross product
ðOA�!� z!Þ, whose ordering conforms to the ‘right-hand-rule’ convention, creates
a vector that is perpendicular to both OA

�!
and z!. For Fig. 1b, we now define

the virtual rotation from point A to A′, in parametric form, as ðAx′;Ay′;Az′Þ ¼
ðAx þ Ay � α;Ay�Ax � α;AzÞ ¼ ðAx ;Ay ;AzÞ þ αðOA�!� z!Þ. Here, α represents the displa-
cement magnitude along vector s!. It is easy to combine both of these pure
movements and extend these concepts to include additional, orthogonal DoF. The
hyperplane equations, in compact (Eq. (2)) and expanded (Eqs. (3a), (3b), and (3c))
parametric form, that accounts for the 6DoF virtual displacement—three transla-
tional and three rotational—of any point, are

ðA′
x;A

′
y;A

′
zÞ ¼ ðAx ;Ay;AzÞ þ ðx; y; zÞ þ γðOB�!� x!Þþ βðOB�!� y!Þþ αðOB�!� z!Þ ð2Þ

and

A′
x ¼ Ax þ xþ 0 � γ�Az � β þ Ay � α ð3aÞ

A′
y ¼ Ay þ yþ Az � γ þ 0 � β�Ax � α ð3bÞ

A′
z ¼ Az þ z�Ay � γ þ Ax � β þ 0 � α; ð3cÞ

respectively. In Eqs. (2) and (3), x (anterior/posterior), y (superior/inferior),
z (medial/lateral), and γ (valgus/varus), β (axial), α (flexion/extension) represent
the movement, for small displacements, along and about the x-, y-, z-axes,
respectively. This follows the international biomechanics society convention for
larger, finite movements (Wu and Cavanagh, 1995). Now that we have explicitly
defined the 6DoF virtual movement of any point, we can use Eq. (2) or Eq. (3) to
determine a change in muscle length following a virtual displacement as

δli ¼ l1�l0

¼ ½ðA′
x�BxÞ2 þ ðA′

y�ByÞ2 þ ðA′
z�BzÞ2�1=2

�½ðAx�BxÞ2 þ ðAy�ByÞ2 þ ðAz�BzÞ2�1=2 : ð4Þ

By inserting Eq. (4) into Eq. (1), we now have an equation that computes the
instantaneous ui(fi, ki, x, y, z, γ, β, α) in a muscle following a virtual perturbation
along any of the 6DoF.

The first- and second-order partial derivatives of ui(fi, ki, x, y, z, γ, β, α), with
respect to generalized coordinates (x, y, z, γ, β, α), have important, physical
properties. The first-order partial derivatives, Maclaurin series approximated, form

JðuÞi ¼
∂u
∂γ

∂u
∂β

∂u
∂α

∂u
∂x

∂u
∂y

∂u
∂z

� �
; ð5Þ

where JðuÞi is the Jacobian matrix of some musculotendon. The first three terms
of JðuÞi are some musculotendon's moment (N m) about the x–y–z axes, while the
last three terms represent its force (N) along these axes. Performing the second-
order partial derivatives, Maclaurin series approximated, yields the following
Hessian matrix:

HðuÞi ¼

∂2u
∂γ2
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; ð6Þ

where HðuÞi is the symmetric stiffness tensor of some musculotendon. All the
equations for the first and second order partial derivatives, found in matrices JðuÞi
and HðuÞi , are presented in Appendix A.

The musculotendon moment and force of a joint is simply found by summating
the individual JðuÞi , such that

JðUÞ ¼ ∑
n

i ¼ 1
JðuÞi

¼ ½Mx My Mz Fx Fy Fz�; ð7Þ

where J(U) contains the musculotendon moments ðMx;y;zÞ and forces ðFx;y;zÞ of a
joint, i is some musculotendon, and n is the total number of musculotendon units.
Similarly, we find the musculotendon joint stiffness by

HðUÞ ¼ ∑
n

i ¼ 1
HðuÞi

¼ K; ð8Þ

where H(U) is the musculotendon joint stiffness tensor (K). The principal stiffnesses
(PS) of tensor K can be found through singular value decomposition, such that

K ¼UΣVn; ð9Þ
where both U and Vn are unitary matrices and Σ is a diagonal matrix that contains
the PS. Since K is a square, symmetric matrix, the singular values of Σ and the
columns of U are equivalent to the eigenvalues and eigenvectors of K, respectively.
Singular value decomposition, however, is more numerically stable than eigenvalue
decomposition (Soderkvist and Wedin, 1993).

We obtained lower leg musculotendon coordinates and architecture from
OpenSim (Musculographics Inc.; Arnold et al., 2010). The model was statically
positioned in one of the two upright postures: (1) with the knee flexed 01 (ankle
and hip flexed 01), and (2) with the knee flexed 301 (ankle and hip flexed 151).
In each posture we took the A (tibial insertion) and B (proximal node) coordinates
of the thirteen musculotendon units that crossed the knee, and transformed them
into a tibial reference frame (Wu and Cavanagh, 1995).

To find each musculotendon's force (fi) and stiffness (ki) along its LoA, we used
the distribution-moment approximation (DMA) model (Ma and Zahalak, 1991),
incorporated with a nonlinear tendon compliance function and an active muscle
force–length relationship from Thelen (2003). Briefly, the DMA-model solves four,
coupled differential equations to calculate a muscle's instantaneous length, stiff-
ness, force, and energy. To demonstrate the derived equations, we theoretically set
the neural input of each musculotendon to maximum (r¼1) (Cashaback et al.,
2013; Brown and Potvin, 2007). For more information on the DMA-model, refer to
Appendix B.

After ki, fi, A, and B were defined for each musculotendon, we calculated all the
second-order partial derivatives found in Eq. (8) to calculate the musculotendon
stiffness of the knee (tibiofemoral) joint. We then compared the PS of the full
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Fig. 1. Coordinate A is moved to a new position, A′, following (a) an infinitesimal
translational perturbation ðδxÞ along the x-axis and (b) an infinitesimal rotational
perturbation ðδθÞ, approximated with the tangential vector s!, about the z-axis. The
origin, O, represents the instantaneous joint center-of-rotation. In (b), note the
difference between the arc circle and tangent s!, from point A to A′, is indis-
tinguishable (i.e., δθ � OA�!� δα). The change in muscle length ðδlÞ from the original
(l0) to the perturbed position (l1) causes storage (or release) of elastic energy.
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