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a b s t r a c t

When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult
to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of ‘non-
directed’ hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of
ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets
(many time points, many vector components). This paper describes a commensurately multivariate method as
an alternative to scalar extraction. The method, called ‘statistical parametric mapping’ (SPM), uses random field
theory to objectively identify field regions which co-vary significantly with the experimental design. We
compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-
muscle force system, and 3D ground reaction forces. Scalar extractionwas found to bias the analyses of all three
datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance
amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively
multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal
correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D
scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was
concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-
simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex
biomechanical systems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Measurements of motion and the forces underlying that motion
are fundamental to biomechanical experimentation. These measure-
ments are often manifested as one-dimensional (1D) scalar trajec-
tories yi(q), where i represents a particular physical body, joint, axis
or direction, and where q represents 1D time or space. Experiments
typically involve repeated measurements of yi(q) followed by regis-
tration (i.e. homologously optimal temporal or spatial normalization)
to a domain of 0%–100% (Sadeghi et al., 2003). This paper pertains to
analysis of registered data yi(q).

Given that many potential sources of bias exist in yi(q) analysis
(Rayner, 1985; James and Bates, 1997; Mullineaux et al., 2001;
Knudson, 2009), a non-trivial challenge is to employ statistical
methods that are consistent with one's null hypothesis. Consider
first ‘directed’ null hypotheses: those which claim response equiva-
lence in particular vector components i, and in particular points q or
windows [q0, q1]:

Example ‘directed’ null hypothesis: Controls and Patients
exhibit identical maximum knee flexion during walking between
20% and 30% stance.

To test this hypothesis only maximum knee flexion should be
assessed, and only in the specified time window. Testing other time
windows, joints, or joint axes in a post hoc sense would constitute
bias. This is because increasing the number of statistical tests
increases our risk of incorrectly rejecting the null hypothesis (see
Supplementary Material – Appendix A). In other words, it is biased to
expand the scope of one's null hypothesis after seeing the data. We
refer to this type of bias as ‘post hoc regional focus bias’.

Next consider ‘non-directed’ null hypotheses: those which
broadly claim kinematic or dynamic response equivalence:

Example ‘non-directed’ null hypothesis: Controls and Patients
exhibit identical hip and knee kinematics during stance phase.

To address this hypothesis both hip and knee joint rotations
should be assessed, about all three orthogonal spatial axes, and
from 0% to 100% stance (i.e. the entire dataset yi(q)). It would be
biased to assess only maximum hip flexion, for example, in a post
hoc sense but for the opposite reason: it is biased to reduce the
scope of one's null hypothesis after seeing the data.

Non-directed hypotheses expose a second potential source of
bias: covariance among the I vector components. Scalar analyses
ignore covariance and are therefore coordinate-system dependent
(see Supplementary Material – Appendix B). This is important
because a particular coordinate system — even one defined
anatomically and local to a moving segment — may not reflect
underlying mechanical function (Kutch and Valero-Cuevas, 2011).
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Joint rotations, for example, may not be independent because
muscle lines of action are generally not parallel to externally
defined axes (Jensen and Davy, 1975). Joint moments may also
not be independent because endpoint force control, for example,
requires coordinated joint moment covariance (Wang et al., 2000).
Under a non-directed hypothesis this covariance must be analyzed
because separate analysis of the I components is equivalent to an
assumption of independence, an assumption which may not be
justified (see Supplementary Material – Appendix B). We refer to
this source of bias as ‘inter-component covariance bias’.

Both post hoc regional focus bias and inter-component covariance
bias have been acknowledged previously (Rayner, 1985; James and
Bates, 1997; Mullineaux et al., 2001; Knudson, 2009). However, to our
knowledge no study has proposed a comprehensive solution.

The purpose of this paper is to show that a method called
Statistical Parametric Mapping (SPM) (Friston et al., 2007) greatly
mitigates both bias sources. The method begins by regarding the
data yi(q) as a vector field yðqÞ, a multi-component vector y whose
values change in time or space q (Fig. 1). When regarding the data
in this manner, it is possible to use random field theory (RFT)
(Adler and Taylor, 2007) to calculate the probability that observed
vector field changes resulted from chance vector field fluctuations.

We use SPM and RFT to conduct formalized hypothesis testing on
three separate, publicly available biomechanical vector field datasets.
We then contrast these results with the traditional scalar extraction
approach. Based on statistical disagreement between the two meth-
ods we infer that, by definition, at least one of the methods is biased.
We finally use mathematical arguments (Supplementary Material)
and logical interpretations of the original data to conclude that scalar
extraction constitutes a biased approach to non-directed hypothesis
testing, and that SPM overcomes these biases.

2. Methods

2.1. Datasets

We reanalyzed three publicly available datasets (Table 1):

� Dataset A (Neptune et al., 1999) (http://isbweb.org/data/rrn/): stance-phase
lower extremity dynamics in ten subjects performing ballistic side-shuffle and
v-cut tasks (Fig. 2). Present focus was on within-subject mean three dimen-
sional knee rotations for the eight subjects whose data were labeled unam-
biguously in the public dataset.

� Dataset B (Besier et al., 2009) (https://simtk.org/home/muscleforces): stance-
phase knee-muscle forces during walking and running in 16 Controls and 27
Patello-Femoral Pain (PFP) patients, as estimated from EMG-driven forward-
dynamics simulations. Present focus was on walking and absolute forces
(newtons) (Fig. 3).

� Dataset C (Dorn et al., 2012) (https://simtk.org/home/runningspeeds): one
subject's full-body kinematics and ground reaction forces (GRF) during running
at four different speeds: 3.56, 5.20, 7.00, and 9.49 ms�1. Present focus was on
three-dimensional left-foot GRF (Fig. 4), for which a total of eight responses
were available. We linearly interpolated the GRF data across stance phase to
Q¼100 time points.

These three datasets were chosen, first, to represent a range of biomechanical
data modalities: kinematics, modeled (internal) muscle forces, and external forces.
Second, they were chosen to demonstrate how vector field analysis applies to a
range of statistical tests: (A) paired t tests, (B) two-sample t tests, and (C) linear
regression.

2.2. Traditional scalar extraction analysis

Two, ten, and three scalars were respectively extracted from the three datasets
(Table 1). These particular scalars were chosen either because they appeared to be
most affected by the experiment (Datasets A and C), or because they were
physiologically relevant (Dataset B: maximum force). As indicated above, Dataset
A's task effects were assessed using paired t tests, Dataset B's group effects were
assessed using two-sample (independent) t tests, and Dataset C's speed effects
were assessed using linear regression.

Since we conducted one test for each scalar, we performed N¼2, N¼10 and
N¼3 tests on Datasets A, B and C, respectively, where N is the number of extracted
scalars. To retain a family-wise Type I error rate of α¼ 0:05 we adopted Šidák
thresholds of p¼0.0253, p¼0.0051, and p¼0.0170 respectively, where the Šidák
threshold is

pcritical ¼ 1�ð1�αÞ1=N ð1Þ

These scalar analyses superficially appear to be legitimate analysis options.
However, through comparison with the equivalent vector field analyses (Section
2.3), we will show how and why scalar extraction is biased for non-directed null
hypothesis testing.

2.3. Statistical parametric mapping (SPM)

SPM analyses (Friston et al., 2007) were conducted using vector field analogs to
the aforementioned univariate tests (Section 2.2). Before detailing SPM procedures,
we note that they are conceptually identical to univariate procedures: conducting a
one-sample t test on ten scalar values, for example, is nearly identical to conducting
a one-sample t test on ten vector fields. The only differences are that SPM:
(i) considers vector covariance when computing the test statistic, (ii) considers
field smoothness and size when computing the critical test statistic threshold, and
(iii) considers random field behavior when computing p values (see Appendix A
and B – Supplementary Material).

Ultimately each SPM test results in a test statistic field (e.g. the t statistic as a
function of time), and RFT is used to assess the significance of this statistical field.
Sections 2.3.1–2.3.3 below detail test statistic field computations for the current
datasets, Section 2.3.4 describes RFT computations of critical test statistic values

Fig. 1. Vector field schematic: a two-component vector varying in time. Depicted
are mean ground reaction force (GRF) vectors F ¼ ½Fx; Fy�> from one subject during
running (Dorn et al., 2012), where +x and +y represent the anterior and vertical
directions, respectively. These vectors, when projected on the (Time, Fx) and (Time, Fy)
planes, produce common GRF plots (see Fig. 4a, b); here vertical dotted lines depict
standard deviation ‘clouds’. When F is projected on the (Fx, Fy) plane these standard
deviations are revealed to arise from covariance ellipses, where ellipse orientation
indicates the direction of maximum covariance between Fx and Fy (see
Supplementary Material – Appendix B).

Table 1
Dataset and scalar extraction overview. I, J, Q and N are the numbers of vector
components, responses, time points, and extracted scalars, respectively. For vector
field analyses, post hoc scalar field analyses, and extracted scalar analyses we
conducted one, I and N tests, respectively. Šidák thresholds of p¼0.0253, p¼0.0170
and p¼0.0051 maintained a family-wise error rate of α¼ 0:05 across 2, 3, and 10
tests, respectively (see Eq. (1)).

I J Q N Extracted scalars

Dataset A 3 8 101 2 (1) Max. flexion (at � 50% stance)
(2) Ad-abduction at 0% stance

Dataset B 10 43 100 10 Max. force for each muscle (J1¼16,
J2¼27)

Dataset C 3 8 100 3 (1) Max. propulsion force (GRFx,
� 75% stance)

(3) Max. vertical force (GRFy,
� 30–50% stance)

(3) Max. lateral force (GRFz, � 15%
stance)
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