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a b s t r a c t

Cells remarkably are capable of large deformations during motility and when subjected to mechanical
force. Measurement of mechanical deformation (i.e. displacements, strain) is critical to understand
functional changes in cells and biological tissues following disease, and to elucidate basic relationships
between applied force and cellular biosynthesis. Microscopy-based imaging modalities provide the
ability to noninvasively visualize small cell or tissue structures and track their motion over time, often
using two-dimensional (2D) digital image (texture) correlation algorithms. For the measurement of
complex and nonlinear motion in cells and tissues, implementation of texture correlation algorithms
with high order approximations of displacement mapping terms are needed to minimize error. Here, we
extend a texture correlation algorithm with up to third-order approximation of displacement mapping
terms for the measurement of cell and tissue deformation. We additionally investigate relationships
between measurement error and image texture, defined by subset entropy. Displacement measurement
error is significantly reduced when the order of displacement mapping terms in the texture correlation
algorithm matches or exceeds the order of the deformation observed. Displacement measurement error
is also inversely proportional to subset entropy, with well-defined cell and tissue structures leading to
high entropy and low error. For cell and tissue studies where complex or nonlinear displacements are
expected, texture correlation algorithms with high order terms are required to best characterize the
observed deformation.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cells and tissues in the body are capable of large deformation
both in vitro and in vivo. In controlled studies by micropipette
aspiration (Pravincumar et al., 2012) and optical tweezers (Henon
et al., 1999), applied mechanical forces or pressure cause cells to
undergo complex and viscoelastic changes in shape that relate to
dynamics of the cytoskeleton. Flow and signal transduction path-
ways greatly influence cell polarization and motility with large
changes to cellular shape (Maree et al., 2012). Red blood cells
(Mills et al., 2004) and granulocytes (Evans and Kukan, 1984)
undergo extreme deformations during flow. At the tissue level,
excessive strain and strain rates have been linked to concussion in
traumatic brain injury (Viano et al., 2005).

Because mechanical forces act upon our bodies, eliciting a
diverse set of cellular responses, it is important to understand
how our cells perceive and respond to force in the surrounding
environment. One approach to address this question is to observe
the cellular response to the mechanical forces and determine

mechanistic relationships to the elicited chemical activity (Bershadsky
et al., 2006; Janmey and McCulloch, 2007; Vogel and Sheetz, 2006;
Zhu et al., 2000). To understand the influence of mechanical force
on cells and tissues, unique methods are required to determine, in
part, distributions of deformation (e.g. displacements and strain)
throughout cellular subcomponents, including cytoskeleton, mito-
chondria, and the nucleus, as well as the surrounding tissue
microenvironment (Gilchrist et al., 2004; Knight et al., 2006).

Texture correlation, a modified digital image correlation (DIC)
procedure, utilizes the natural texture of biological tissues to
measure displacement fields between two consecutive digital
images (Bay, 1995). The texture correlation algorithm tracks the
motion of a pixel within an image that is characterized by a unique
intensity pattern defined by a subset of surrounding pixels. The
displacement of the unique subset can be tracked by comparing
images representing an object in a reference (i.e. initial) and
deformed (i.e. current) configuration. Texture correlation has been
applied to quantify bone, soft tissue, and intracellular deforma-
tions (Bay, 1995; Gilchrist et al., 2004,2007; Knight et al., 2006;
Thompson et al., 2007; Wang et al., 2002; Zhang and Arola, 2004;
Zhao and Simmons, 2012).

There are several unresolved concerns in the application of
texture correlation algorithms to cell and tissue mechanics studies.
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First, to reduce displacement measurement error for objects in
complex motion, higher order (1st- and 2nd-order) displacement
mapping terms were introduced to the algorithm (Chu et al., 1985;
Lu and Cary, 2000; Vendroux and Knauss, 1998). However, for
most studies of cell and tissue deformation, only 1st-order algo-
rithms have been used to date (Gilchrist et al., 2004; Knight et al.,
2006; Wang et al., 2002). High order approximations for displace-
ment mapping terms may be required to best describe complex
cell and tissue motion, especially when long image acquisition
times limit the ability to visualize temporal changes, often occur-
ring on millisecond time scales (e.g. (Pravincumar et al., 2012;
Viano et al., 2005)). A related concern is that the distinct intensity
patterns needed for texture correlation might not be found in
small subset regions, especially in the extracellular matrix or the
cytoplasm. A relatively large subset region (on the order of tens by
tens of square pixels) may be necessary to provide a unique
pattern that is tracked using the algorithm. In this case, however,
linear deformation mapping may not be appropriate in the large
subset region to characterize internal motion.

Second, relationships between the subset texture and measure-
ment error of the algorithm have been largely unexplored. Two
methods have typically been used to define subset texture: subset
entropy and subset roughness (Gilchrist et al., 2004; Haralick et al.,
1973; Sun and Pang, 2007). Subset entropy is a statistical measure
of randomness of pixel values within a subset, in comparison to
the entire image. Subset roughness depends on the standard
deviation of the pixel values within a subset. Previous studies
demonstrated an increase in subset entropy or roughness with the
measurement accuracy. However, previous results were typically
obtained using a single-loop simulation, i.e. only a pair of pre-
and post-deformation images was used. Since texture correlation
algorithms are sensitive to the image noise, it is not clear how the
magnitude of error varies over multiple simulations representing
arbitrary images acquired with superimposed random noise,
a case more closely representing practical application of the
algorithm.

In this study, we propose a texture correlation algorithm
enabling higher order (up to 3rd-order Taylor series) approxi-
mation of the displacement gradients. We compare the utility of

texture correlation with 0th-, 1st-, 2nd-, and 3rd-order displace-
ment gradients for cell and tissue mechanics studies. Furthermore,
we applied Monte-Carlo simulations to determine the relation-
ship between subset texture, defined by entropy, and the error of
displacement measurements.

2. Methods

2.1. Texture correlation algorithm

In this study, a texture correlation algorithmwith up to 3rd-order displacement
mapping terms was implemented. Texture correlation algorithms, that included
0th-, 1st-, and 2nd-order terms, were previously presented by Bay (Bay, 1995),
Vendroux and Knauss (Vendroux and Knauss, 1998), and Lu and Cary (Lu and Cary,
2000), respectively. The 3rd-order algorithm is an expansion of the 2nd-order
algorithm, considering deformation in two dimensions, with pixels of interest
identified in image pairs that depict an object in reference (original) and deformed
(current) configurations. For each point (e.g. pixel) of interest in the ref-
erence image, local texture centered about the point was defined using image
intensity values in a square subset of pixels. The coordinates of each subset point in
the reference image, (x, y), were mapped to their counterpart in the deformed
image, ( ~x ; ~y), using

~x ¼ x0 þ Uðx; yÞ
~y ¼ y0 þ Vðx; yÞ ð1Þ

where U and V are the displacement components of each subset point. U and V can be
approximated utilizing up to 3rd-order Taylor series expansion about a pixel of interest
(x0 ; y0), as detailed in the Appendix. Briefly, the Taylor series expansion includes up to
twenty displacement parameters, and allowed for the representation of complex
deformations (Fig. 1). Bicubic spline interpolation was introduced to describe motion,
in addition to a scaling parameter, w, to account for differences in reference and
deformed image intensities. To find the mapping parameters, U and V, a least-squares
correlation coefficient and Newton–Raphson optimization method was implemented.
Importantly, a simple demonstration code for the algorithm, ‘TextureCorrDemo.m′, is
available for download as a supplement online.

2.2. Cellular-scale images and simulated deformation

To compare the utility of a texture correlation algorithm with 0th-, 1st-, 2nd-,
and 3rd-order displacement mapping terms, reference and deformed images of
single cells were acquired and simulated, respectively. An image of bovine
pulmonary artery endothelial (BPAE) cells (Invitrogen Inc., Carlsbad, CA), a model
cell type with representative cytoskeletal and nuclear structures expected in a
broad range of eukaryotic cells, was acquired by widefield fluorescent microscopy

Fig. 1. Measurement error for a texture correlation algorithm with up to 3rd-order displacement mapping terms was determined using microscopy images and applied
deformations. (a) Microscopy images of bovine pulmonary arterial endothelial (BPAE) cells revealed actin (Texas Red), microtubules (GFP), and nuclei (DAPI), which were
merged for subsequent analysis in the study. Known deformation, defined by displacement mapping terms, was applied to subset points: (b) reference; (c) 1st-order
deformation (10% ∂u=∂y); (d) 2nd-order deformation (1% ∂2v=∂x∂yÞ; (e) 3rd-order deformation (1% ∂3u=∂x∂2yÞ; (f) combination of 1st- and 2nd-order deformation
(10% ∂u=∂yþ 1% ∂2v=∂x∂yÞ; (g) combination of 1st-, 2nd-, and 3rd-order deformation (10% ∂u=∂yþ 0:5% ∂2v=∂x∂yþ 1% ∂3u=∂x∂2y), and (h) combination of 2nd- and 3rd-
order deformation (1% ∂2v=∂x∂y+1% ∂3u=∂3yþ 1% ∂3v=∂2x∂y).
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