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a b s t r a c t

A biphasic model for noncommunicating hydrocephalus in patient-specific geometry is proposed. The
model can take into account the nonlinear behavior of brain tissue under large deformation, the
nonlinear variation of hydraulic conductivity with deformation, and contact with a rigid, impermeable
skull using a recently developed algorithm. The model was capable of achieving over a 700 percent
ventricular enlargement, which is much greater than in previous studies, primarily due to the use of an
anatomically realistic skull recreated from magnetic resonance imaging rather than an artificial skull
created by offsetting the outer surface of the cerebrum. The choice of softening or stiffening behavior of
brain tissue, both having been demonstrated in previous experimental studies, was found to have a
significant effect on the volume and shape of the deformed ventricle, and the consideration of the
variation of the hydraulic conductivity with deformation had a modest effect on the deformed ventricle.
The model predicts that noncommunicating hydrocephalus occurs for ventricular fluid pressure on the
order of 1300 Pa.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cerebrospinal fluid (CSF) plays an important role in the
physiological activities and protection of the brain. Under the
classical theory of cerebrospinal fluid hydrodynamics (Orešković
and Klarica, 2011), this fluid is produced at a constant rate in the
choroid plexuses of the lateral and third ventricles. Most of the CSF
drains through the Sylvius aqueduct to the fourth ventricle, while
a small amount flows through the cerebrum into the subarachnoid
space adjacent to the skull. If the Sylvius aqueduct becomes
obstructed, such as caused by a growing tumor adjacent to it,
CSF accumulates in the ventricles and an abnormally high trans-
mantle pressure gradient develops. As a result, the ventricles
expand significantly, leading to a medical condition known as
noncommunicating, or obstructive, hydrocephalus (Corns and
Martin, 2012).

Over the past 25 years, numerous mathematical models have
been proposed to analyze hydrocephalus. Many of these models
have represented the brain as a single-phase material in planar
geometries (Fritz and Drapaca, 2009; Roy et al., 2013) and in
cylindrical geometries (Drapaca et al., 2006; Sivaloganathan et al.,
2005a, 2005b; Wilkie et al., 2010, 2011, 2012a, 2012b). In contrast,
since the brain is immersed in and permeated by the CSF, others

have represented the brain as a poroelastic or biphasic material in
planar geometries (Momjian and Bichsel, 2008; Nagashima et al.,
1987; Peña et al., 1999; Shahim et al., 2010; Taylor and Miller,
2004), in cylindrical geometries (Kaczmarek et al., 1997; Stastna
et al., 1999; Tenti et al., 1999; Wilkie et al., 2012b), and in spherical
geometries (García and Smith, 2010; Levine, 1999; Mehrabian and
Abousleiman, 2011; Shahim et al., 2012; Smillie et al., 2005; Sobey
and Wirth, 2006; Tully and Ventikos, 2009, 2011; Vardakis et al.,
2013; Wilkie et al., 2012c). However, as the ventricles are not well
represented as cylindrical or spherical cavities, recent efforts have
focused on modeling hydrocephalus in anatomically realistic
geometries (Cheng and Bilston, 2010; Clatz et al., 2007; Dutta-
Roy et al., 2008) or quasi-realistic geometries (Wirth and Sobey,
2006).

While many of these models have given relatively good
correlations of clinical observations of hydrocephalus, only a few
single-phase models (Drapaca et al., 2006; Fritz and Drapaca,
2009; Roy et al., 2013; Wilkie et al., 2011) and two biphasic
models (Dutta-Roy et al., 2008; García and Smith, 2010) have
considered the nonlinear stress–strain response documented
experimentally under finite deformation (Franceschini et al.,
2006; Kaster et al., 2011; Miller, 1999; Miller and Chinzei, 1997,
2002). Considering that displacements occurring during hydro-
cephalus can be large, it would appear that nonlinear stress–strain
curves under finite deformations should be taken into account.
However, despite accounting for such behavior, the biphasic,
noncommunicating model of Dutta-Roy et al. (2008) was not
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capable of producing either the ventricular volume associated
with communicating, normal-pressure hydrocephalus or the larger
ventricular volume associated with noncommunicating hydroce-
phalus found in clinical studies (Matsumae et al., 1996a).

A new, patient-specific model of noncommunicating hydroce-
phalus is proposed to more accurately represent the ventricular
expansion found in clinical studies. The model takes into account
the biphasic nature of brain tissue and the nonlinear behavior of
the tissue under finite deformation. Different from other anato-
mically realistic models (Cheng and Bilston, 2010; Clatz et al.,
2007; Dutta-Roy et al., 2008), the model also accounts for varia-
tion of the hydraulic conductivity with deformation and for
contact between the expanding cerebrum and the rigid skull that
encloses it using a recently developed algorithm (Ateshian et al.,
2010). With this model, we estimate the necessary ventricular
fluid pressure to cause noncommunicating hydrocephalus.

2. Methods

2.1. Geometry

The cerebrum and ventricle geometries were generated in 3D SLICER (slicer.org)
using magnetic resonance (MR) imagery of a 72-year-old male from the Visible
Human Dataset (National Library of Medicine, Bethesda, MD). The geometries were
smoothed and simplified in MESHLAB (meshlab.sourceforge.net), and then, due to
the approximate symmetry of the brain, divided in half along the sagittal plane in
PARAVIEW (Kitware, Inc., Clifton Park, NY), yielding the surfaces shown in Fig. 1.

The portion of the skull above the cerebrum was also reconstructed from the
same MR image dataset. In addition, a surface corresponding to the soft tissue below
the brain was created by offsetting the bottom surface of the cerebrum a fixed
distance of 5 mm (Fig. 2), which is a representative distance consistent with the
reconstructed skull from the MR images. This surface proved necessary to prevent
physically unrealistic anterior/posterior deformation of the base of the cerebrum.

To compare against the model of Dutta-Roy et al. (2008), we also created a set
of artificial skulls by offsetting the entire outer surface of the cerebrum by a fixed
distance. The offset distance between the cerebrum and skull ranged from 3 mm,
which was used by Dutta-Roy et al. (2008), to 7 mm, which is representative of the
maximum distance between the cerebrum and skull recreated from the MR images.

2.2. Mathematical model

The cerebrum was modeled as a homogeneous biphasic medium representing
the solid tissue and cerebrospinal fluid. This theoretical framework assumes that
both the solid and fluid phases are intrinsically incompressible but that the
medium may compress by expulsion of the fluid. The governing equations are
force equilibrium and conservation of mass of the mixture, which may be
expressed, respectively, as

∇ � ðre−pIÞ ¼ 0, ð1Þ
where re is the effective stress that results from the deformation of the solid matrix
and p is the fluid pressure, and

∇ � ðvsþwÞ ¼ 0, ð2Þ
where vs is the velocity of the solid matrix and w is the flux of the fluid relative to
the deforming solid (Ateshian et al., 2010; Smith et al., 2012). The relative fluid flux

w may be expressed in terms of the fluid pressure gradient by Darcy's law as

w¼−κ∇p, ð3Þ

where κ is the hydraulic conductivity.
The solid phase of the cerebrum followed an Ogden material model, wherein

the strain energy has the form

W ¼ ∑
n

k ¼ 1

μk
αk

ðλαk1 þλαk2 þλαk3 −3−αk ln JÞþ μ′
2
ðJ−1Þ2 , ð4Þ

where λ1, λ2, and λ3 are the principal stretch ratios, αk describes the shape of the
stress–stretch curve, μk and μ′ are material parameters, and J is the determinant of
the deformation tensor (Ogden, 1984). To assess the sensitivity of results with
respect to material nonlinearities, two sets of parameters were used in this study.
Based on the experimental study of Miller and Chinzei (2002), in the first set only
one term of Eq. (4) was considered with α1 ¼−4:7. In addition, based on the
experimental study of Franceschini et al. (2006), in the second set two terms of Eq.
(4) were considered with α1 ¼ 4:31 and α2 ¼ 7:74. While both nonlinear sets have
the same slope at zero deformation, the former predicts a softening in tension,
whereas the latter yields a significant stiffening effect in tension (Fig. 3). Hence-
forth, these will be referred to as the softening and stiffening models, respectively.

To be consistent with other studies of hydrocephalus (Dutta-Roy et al., 2008), a
Young's modulus E of 420.6 Pa and a Poisson's ratio ν of 0.35 were used, fromwhich
values for μk and μ′ can be determined (García and Smith, 2010; Smith et al., 2012).
The chosen Young's modulus represents a relaxed value that corresponds to an
instantaneous modulus of 2273 Pa (Miller and Chinzei, 2002). Thus, while viscoe-
lastic effects were not directly included in the model, the relaxed material
properties account for the viscoelastic nature of brain tissue found in experimental
studies (Cheng and Bilston, 2007; Miller, 1999) and for the slow development of
hydrocephalus, an approach recommended by Taylor and Miller (2004).

Fig. 1. Cerebrum and ventricle geometries reconstructed from magnetic resonance
imagery from the Visible Human Dataset.

Fig. 2. Computational mesh of the cerebrum, rigid and impermeable skull, and
rigid but permeable soft tissue. The boundary conditions associated with the
ventricle and outer surface of the cerebrum are annotated.
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Fig. 3. Uniaxial stress response for the two sets of strain energy function material
parameters. The Miller and Chinzei (2002) model represents softening behavior in
tension, while the Franceschini et al. (2006) model represents stiffening behavior.
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