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a b s t r a c t

Unique biomechanical behavior of articular cartilage is a result of its structure and composition.

Interrelationships of tissue constituents (collagen, proteoglycans (PGs) and water) and tissue biome-

chanical parameters have been studied, but it is evident that no constituent alone explains the tissue

mechanics. Fourier transform infrared (FT-IR) spectra can provide detailed information about the

biochemical composition of articular cartilage. In this study, a chemometric approach to predict the

biomechanical behavior of articular cartilage directly from the FT-IR spectra, i.e., without converting the

data into collagen and PG information, was investigated. Partial least squares regression (PLSR) was

used to predict equilibrium modulus (n¼32) and dynamic modulus (n¼24) of bovine cartilage samples

from their average FT-IR spectra. The linear correlation coefficients between the reference and

predicted values of Young’s modulus and dynamic modulus were r¼0.866 (po0.001) and r¼0.898

(po0.001), respectively. When the compressive biomechanical behavior of AC is predicted, the present

study indicates that similar or improved results can be obtained with FT-IR spectroscopy as compared

to those of traditional biochemical methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Articular cartilage (AC) is a functional tissue that covers the
bone-ends of diarthroidal joints. Its unique biomechanical fea-
tures are required to withstand the everyday stresses generated
during typical joint movements (Mow et al., 1992). From the
biomechanical point of view, it provides nearly frictionless gliding
surfaces within a joint and redistributes the stresses generated in
normal locomotion to contact surfaces with larger areas. AC is
compressible or nearly incompressible depending on the loading
conditions. This biomechanical behavior of AC is a result of its
composition and structure. Majority of AC is composed by water,
fibrillous collagen network, proteoglycans (PGs) and chondro-
cytes (Mow et al., 1992). The exact mechanisms how the
tissue macromolecular composition and architecture relate to its
biomechanical properties have been under active research, and
understanding of the structure–function relationships of AC is

essential, e.g., if artificial cartilage tissue is developed. It is evident
that the inhomogeneous distribution of all macromolecular com-
ponents in AC and complex 3-dimensional collagen network
provide the arrangement required for AC to function optimally.

Research efforts toward understanding the biomechanical
properties of AC cartilage have evolved from simple linear
correlation analyses between the tissue constituents and biome-
chanical parameters to complex mathematical models of AC
biomechanics (Kempson et al., 1970; Mow et al., 1992; Wilson
et al., 2004; Korhonen et al., 2008). Overall goal of the past studies
has been to interrelate to the biomechanical behavior of the tissue
with its composition. However, different biochemical constitutes
interact with each other and consequently the link between the
biomechanical behavior and specific macromolecular composi-
tion is not trivial. Unfortunately, the currently applied biochem-
ical methods are not ideal for taking into account of the
biochemical composition as a whole. Therefore, different compo-
sitional parameters usually are individually correlated with bio-
mechanical parameters. Further, specific interactions between the
macromolecules are not clear, and therefore they cannot be
included in the mathematical models.

Fourier transform infrared (FT-IR) spectroscopy offers a
possibility to collect detailed information about the tissue
composition. The method is based on the absorption of
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infrared energy in the material under interest. Energy is
absorbed by the intramolecular bonds at characteristic reso-
nance frequencies. Collected absorption spectra carry a vast
amount of information about the tissue biochemical composi-
tion. However, as absorption peaks overlap with each other,
specific macromolecular information is difficult to retrieve
from the data. Several methods, such as integrated absor-
bances, second derivative spectroscopy, curve fitting and
multivariate models, have been used to obtain collagen and
PG contents in AC (Yin et al., 2012; Camacho et al., 2001;
Rieppo et al., 2010; Yin and Xia, 2010; Rieppo et al., 2012). The
estimated contents could be then correlated with the biome-
chanical parameters (Mahmoodian et al., 2011), but such
approaches would offer little improvement compared to the
earlier biochemical analyses methods.

Multivariate analysis makes possible to consider the col-
lected spectral data as an overall description of material
biochemical properties. Multivariate regression models, such
as Partial least squares regression (PLSR), are calibrated against
a quantitative or qualitative feature of the specimen provided
by a reference method. Application requires no a priori infor-
mation about how or which part of the data is related to the
phenomenon of interest. This resolves the problems associated
with the application of potentially interdependent variables
(collagen, cross-links, proteoglycans etc.). Indeed, structure–
function relationships are not studied by correlating the
measured variables one by one with the functional properties,
but instead, the multivariate regression methods build new
uncorrelated variables that are used in the regression to
explain the studied phenomenon. Obviously, multivariate
regression analysis provides no direct information about the
structure–function relationships but it allows evaluating
how well the average biochemical composition can predict
the biomechanical parameters.

This study was designed to evaluate whether a direct relation
of FT-IR data with the biomechanical properties of AC can be
established by using multivariate regression techniques. As far as
we know, this study is the first attempt to directly, i.e., without
converting the spectral data to estimate specific macromolecules,
link spectral characteristics to biomechanical properties of AC.
We hypothesize that multivariate analysis can improve the
prediction of biomechanical properties over that obtained
previously with the traditional correlation analysis. This study
also reveals new information about which spectral regions hold
the most valuable information regarding specific functional
properties.

2. Materials and methods

2.1. Sample preparation

The samples used in this study were originally collected in other studies

(Saarakkala et al., 2003; Töyräs et al., 2003). Briefly, bovine patellae (n¼32) with

variable visual signs of spontaneous degeneration were obtained. A cylindrical

osteochondral sample (d¼19 mm) was drilled from each patella. The samples

were stored in a freezer (�20 1C) for 2 weeks. Subsequently, the sample was split

into two halves. From the first block, a cylindrical (d¼3.7 mm) full-thickness

cartilage sample was taken for biomechanical reference measurements while the

remaining cartilage was used for biochemical reference measurements. The

second block was fixed with 10% formalin, decalcified with EDTA, dehydrated

and embedded in paraffin.

2.2. Biomechanical testing

Biomechanical testing was originally conducted in an earlier study

(Saarakkala et al., 2003; Töyräs et al., 2003). Briefly, the biomechanical

measurements were conducted immediately after preparing the smaller

cylindrical sample (d¼3.7 mm) from the larger osteochondral block. A

custom-made material testing instrument (with resolutions of 5 mN and 0.1 mm

for the force and position, respectively) was used for biomechanical reference

measurements (stress–relaxation in unconfined compression geometry, 10% pre-

strain followed by 10% strain with 2 mm/s ramp speed and relaxation time of 2400 s).

Young’s modulus (or equilibrium modulus) and dynamic (or instantaneous modulus)

modulus were calculated as a stress–strain ratio after the relaxation and

instantaneously after a 10% step, respectively (Saarakkala et al., 2003; Töyräs et al.,

2003).

2.3. FT-IR spectroscopic imaging

Three 5-mm-thick sections were cut from each paraffin-embedded sample

with a microtome and transferred onto standard microscope slides. Paraffin

was dissolved with xylene prior to transferring the sections onto 2-mm-thick

ZnSe windows for the FT-IR spectroscopic imaging. Measurements were

conducted with the Perkin Elmer Spotlight 300 FT-IR imaging system (Perkin

Elmer, Shelton, CO, USA) in transmission mode using spectral resolution and

pixel resolution of 4 cm�1 and 25 mm, respectively. Eight repetitive scans per

pixel were averaged. The imaging system and the sample box were purged

with CO2-free dried air during the measurements to standardize the measure-

ment conditions (Parker Balston, Haverhill, MA, USA). A 400-mm-wide area

was imaged from cartilage surface to cartilage-bone junction within each

section.

2.4. Data pre-processing

Since only bulk reference biomechanical values for each sample were avail-

able, spectra of each section were also averaged to obtain one mean spectrum.

Further, the mean spectra of parallel sections of the samples were averaged.

Thereafter, Extended Multiplicative Signal Correction (EMSC) was used to remove

scattering-related baseline variations from the spectra (Kohler et al., 2007).

2.5. Univariate analysis

Univariate parameters for estimation of the collagen content (amide I region,

1584–1720 cm�1) and PG content (carbohydrate region, 984–1140 cm�1) were

calculated from the FT-IR spectra (Camacho et al., 2001). The univariate para-

meters were correlated with Young’s modulus and dynamic modulus of the same

samples.

2.6. Multivariate analysis models

Spectral region of 900–1800 cm�1 was used for both Young’s modulus and

dynamic modulus. Optimal number of components for the models was chosen by

performing a leave-one-out cross-validation and calculating the root-mean-square

error of cross validation (RMSECV) for all models. Minimum value of RMSECV

indicated the best model. The best models were evaluated by calculating RMSECV

and by Pearson’s correlation coefficient between the predicted values and the

reference values.

2.7. Genetic algorithm for wavenumber selection

Genetic algorithm was used to select the spectral variables in order to see if

the models built using the full spectral range could be improved. Genetic

algorithms are optimization methods based on the principles of natural evolution

(Leardi et al., 2002). Variables are called genes, and the solution vector that

contains the selected variables is called a chromosome. In variable selection,

chromosomes are binary vectors with 1’s indicating the variables to be selected.

A population contains multiple chromosomes. In the beginning, a population with

a pre-defined population size consisting of random chromosomes is made. A PLSR

model is built for each chromosome, and its performance is evaluated by

evaluating their RMSECV. The smallest RMSECV value indicates the best chromo-

some of the population. Typically, the best solution of the population is copied to

the next population. The next population is formed by recombining the initial

chromosomes by using cross-over and mutation. In cross-over, two chromosomes

are combined by choosing a random splitting point and then combining the parts.

A mutation is a change in a single gene (variable), and it has a low probability. The

algorithm usually runs for a pre-defined number of generations, and the best

chromosome of the last generation is considered as the optimal solution for the

problem.

The parameters used in the genetic algorithm were as follows— the popula-

tion size: 100, gene initialization probability: 5%, cross-over method: one-point,

cross-over probability: 80%, mutation probability: 1%, number of generations: 100,

response (to be minimized): RMSECV of the prediction. The number of PLS

components for Young’s modulus was chosen based on the full spectrum model.

For dynamic modulus, the full spectrum model used a relatively high number of

PLS components. A simpler model was preferred when genetic algorithm was
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