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The feasibility of determining biphasic material properties using regression models was investigated. A
transversely isotropic poroelastic finite element model of stress relaxation was developed and validated
against known results. This model was then used to simulate load intensity for a wide range of material
properties. Linear regression equations for load intensity as a function of the five independent material
properties were then developed for nine time points (131, 205, 304, 390, 500, 619, 700, 800, and 1000 s)
during relaxation. These equations illustrate the effect of individual material property on the stress in the
time history. The equations at the first four time points, as well as one at a later time (five equations)
could be solved for the five unknown material properties given computed values of the load intensity.
Results showed that four of the five material properties could be estimated from the regression equations
to within 9% of the values used in simulation if time points up to 1000 s are included in the set of
equations. However, reasonable estimates of the out of plane Poisson's ratio could not be found. Although
all regression equations depended on permeability, suggesting that true equilibrium was not realized at
1000 s of simulation, it was possible to estimate material properties to within 10% of the expected values
using equations that included data up to 800 s. This suggests that credible estimates of most material
properties can be obtained from tests that are not run to equilibrium, which is typically several thousand
seconds.
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1. Introduction simplify the process for determining material properties from
measured data.

Mechanically, articular cartilage is often modeled as a two-
phase material with solid and fluid phases. Parallel constitutive
models have been proposed using either biphasic (Mow et al.,

1980) or poroelastic (Simon et al., 1983) theories. Although these

2. Methods

An axisymmetric poroelastic model for unconfined compression stress relaxa-

theories developed from different roots, the governing equations
of linear biphasic theory are mathematically equivalent to those of
Biot's theory (Biot, 1941) for linear quasi-static poroelasticity with
incompressible constituents (Simon, 1992). Using these models,
and tests such as confined or unconfined compression, constitutive
constants can be determined by fitting analytical models to measured
data (Armstrong et al., 1984; Bursac et al., 1999; Mow et al., 1980).
Typically, material properties are found using an optimization
procedure that fits a model to experimental data (Lei and Szeri,
2007; Cao et al., 2006; Athanasiou et al., 1995).

The objective of this work is to investigate the feasibility of
using regression models to determine the poroelastic properties of
cartilage tested in unconfined compression. Such models could
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tion was developed using ANSYS. In an unconfined compression stress relaxation
test, a thin cylindrical specimen is compressed between two rigid impermeable and
smooth platens while surrounded by fluid (Fig. 1).

For this investigation we used a transversely isotropic model that shows good
agreement with unconfined compression measurements in growth plate (Cohen
et al,, 1998). The compliance matrix for transverse isotropy has five independent
constants (Bower, 2009)
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where E, v, and p are Young's modulus, Poisson's ratio, and shear modulus,
respectively. The subscripts t and a indicate the transverse and axial or out-of-
plane directions.

Cartilage was modeled using the coupled pore-pressure element CPT213, which
is based on Biot's poroelasticity theory (ANSYS, 2010). This element is a fully direct
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Fig. 1. Schematic of the unconfined compression test of a cylindrical disk of
hydrated cartilage. The same boundary conditions used in Cohen et al. (1998),
were applied. The specimen was free to expand in the radial direction. Displace-
ments in the axial direction were constrained on the bottom of the specimen in
contact with the stationary platen. Free fluid flow was enabled across the lateral
boundaries, i.e., fluid pressure was set as zero on the cylindrical periphery. In
contrast, the fluid was not permitted across the boundaries with the upper and
lower platens.

Table 1
Values of material properties used to simulate stress relaxation in the transversely

isotropic finite element model.

Material property Range

4.3-10.3 in 0.5 increment
0.3-1.1 in 0.1 increment
0.24-0.49 in 0.05 increment
0-0.1 in 0.02 increment
1.8-5.0 in 0.4 increment

Young's modulus in plane E; (MPa)
Young's modulus out of plane E, (MPa)
Poisson's ratio in transverse plane v
Poisson's ratio out of plane vq

Permeability k (x107° m* N s71)

coupling in which the mechanical equilibrium and fluid continuity equations are
satisfied simultaneously. The axis of symmetry coincided with the global Y-axis in
ANSYS. The directions of X, Y and Z were radial, axial and circumferential,
respectively. The stress in the Y direction in ANSYS represents the effective stress
in the Z direction in Armstrong et al. (1984). The total compressive stress is equal to
the fluid pressure subtracted from the effective stress, i.e., o}, = ¢~p,. Using ANSYS,
transverse isotropy is modeled as a special case of orthotropic isotropy. Although
nine elastic constants are needed to model orthotropic isotropy, only five
independent constants are needed for transverse isotropy.

We applied the boundary conditions used by Cohen et al. (1998): the
displacement imposed on the specimen was linear over time, reached its maximum
value of 10% of the cartilage thickness at to =131 s. It was then held constant for
869 s. Axial displacement was constrained on the bottom of the specimen. Free
fluid flow was enabled across the lateral boundaries. In contrast, the fluid was not
permitted across the boundaries with the upper and lower platens.

The computational model was validated using data and results in Cohen et al.
(1998). The specimen was a cylinder with radius a=3.175 mm and thickness
h=1mm. The five independent elastic constants were Young's moduli in the
transverse plane E; = 4.3MPa and out of plane E, = 0.64MPa, Poisson's ratios in the
transverse plane v, =0.49 and out of plane vg =0 and the out-of-plane shear
modulus, x4, which could be any value for the case of uniaxial loading. Permeability
was assumed to be the same in both the axial and transverse directions:
k=5 x 107" m* N! s!. Based on the assumption that, for a soft tissue the solid
and fluid phases are incompressible, the Biot coefficient equals one, and the
reciprocal of the Biot modulus is zero (Simon, 1992). Load intensity at each time
was computed by dividing the total force on the top surface of the model by its
undeformed area. Nonlinear static analysis was performed using the Newton-
Raphson algorithm with an unsymmetric option. A macro, written in the ANSYS
parametric design language, performed the procedure automatically.

The load intensity (f) was computed at nine time points during relaxation:
131 s (when the ramp displacement reached the maximum) and 205, 304, 390,
500, 619, 700, 800 and 1000 s. These points were chosen from among the time
points in Cohen et al. (1998). Simulations were performed using a range of material
properties of growth plate (Villemure and Stokes, 2009) (Table 1). Two of the five
properties were varied in each set of simulations, resulting in ten combinations of
properties. Within each combination, simulations were performed for the range of
material properties in Table 1. This process systematically populated the solution
space for load intensity as a function of feasible material properties. Load intensity
was normalized (f) by the maximum value obtained from all simulations at a given
time. Each material property was normalized by its largest value (Table 1).

Regression models were obtained by fitting the normalized load intensity to
first-order polynomial equations in the normalized material properties at each time
point, which resulted in nine equations. Any five of these equations can be solved
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Fig. 2. Comparison of the transversely isotropic and an isotropic model,
both developed using ANSYS, and the analytical solution of those models and
experimental results from Cohen et al. (1998). For the isotropic model, Young's
modulus was E=1.08 MPa, Poisson's ratio was v=0, and permeability was
k=15.5x 107" m* N™! 571, which are the same values used in Cohen et al. (1998).

using known values of the load intensity to obtain estimates of the five unknown
material properties. In this investigation, known load intensity was obtained from
simulated stress relaxation found using the best-fit material property data from
Cohen et al. (1998). Material properties obtained from the regression equations and
reverted to physical values (p,) were compared with those used to validate our
computational model (p,). The error in the predicted properties was computed
using error = |(p,=p,)/py| x 100%.

3. Results

Load intensity obtained from our finite element model is
almost identical to that given by Cohen et al. (1998), which
validates the computational model (Figs. 2 and 3). Although load
intensity varied approximately linearly with material properties,
there were regions with nonlinear behavior (Figs. 4-13). For
example, load intensity at 1000 s deviated from linear behavior
for E; between 4.3 MPa and 6 MPa and for v; between 0.24 and 0.4
(Fig. 6b). Load intensity at 1000s also deviated from linear
behavior for E; between 4.3 MPa and 6 MPa and for k between
1.8x 105 m*N's!and 3 x 107" m* N™! 57! (Fig. 8b).

Linear regression equations for the normalized load intensity at
specific times (Eqgs. (2)-(10)) showed good fits to the simulated
data (p<0.001 and R>>0.9 for all equations). However, the
coefficients of vg at 304, 390 and 500 s, shown in the equations
below, were not significant (p > 0.05) and were set to zero when
using the corresponding regression equations to determine
mechanical properties.

Fi31 s = 0.4874 + 0.2054E; + 0.2250E, + 0.10327,—0.06597,—0.3534k
2

F205 s = 0.9387-0.2107E; + 0.3950E,—0.07567;—0.04227,,—0.5852k
3)

f304 s =0.7281-0.1787E; + 0.5179E,—0.11215,—0.008274—0.4822k
“

F300 s = 0.5227-0.1114E; + 0.6175E,—0.09607; + 0.00307,,—0.3628k
(5)
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