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Abstract

Peristaltic transport in a two dimensional channel, filled with a porous medium in the peripheral region and a Newtonian fluid in

the core region, is studied under the assumptions of long wavelength and low Reynolds number. The fluid flow is investigated in the

waveframe of reference moving with the velocity of the peristaltic wave. Brinkman extended Darcy equation is utilized to model the

flow in the porous layer. The interface is determined as a part of the solution using the conservation of mass in both the porous and

fluid regions independently. A shear-stress jump boundary condition is used at the interface. The physical quantities of importance

in peristaltic transport like pumping, trapping, reflux and axial velocity are discussed for various parameters of interest governing

the flow like Darcy number, porosity, permeability, effective viscosity etc. It is observed that the peristalsis works as a pump against

greater pressure in two-layered model with a porous medium compared with a viscous fluid in the peripheral layer. Increasing Darcy

number Da decreases the pumping and increasing shear stress jump constant b results in increasing the pumping. The limits on the

time averaged flux %Q for trapping in the core layer are obtained. The discussion on pumping, trapping and reflux may be helpful in

understanding some of the fluid dynamic aspects of the transport of chyme in gastrointestinal tract.
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1. Introduction

Peristaltic transport is a form of fluid transport
generated by a progressive wave of area contraction or
expansion along the length of a distensible tube
containing fluid. Peristalsis induces in general propulsive
and mixing movements. The mechanism is found in
many biological systems having smooth muscle tubes for
example, the movement of chyme in the gastro-intestinal
tract, intra-uterine fluid motion, vasomotion of small
blood vessels and the flows in many other glandular
ducts. The developments on mathematical modelling
and experimental fluid mechanics of peristaltic flows was

given in an early excellent review by Jaffrin and Shapiro
(1971).
It is observed in many biological ducts undergoing

peristalsis, the inner walls of the boundary are coated
with a fluid having different properties from that of the
pumped core fluid, Keener and Sneyd (1998). The
primary function of the gastrointestinal tract is to
absorb nutrients from the mix of food and liquid that
move through it. It is surrounded by a number of muscle
layers having smooth muscles and contraction of
these muscle layers can mix the contents of the tract
and move food in a controlled manner in an appropriate
direction. Beneath the muscle layers is the submucosa
and finally a layer of epithelial cells, which are the
responsible for the absorption of water from the
intestine. It consists of many folds and there are pores
through the tight junctions of them. Motivated by these
facts we model the flow in gastrointestinal tract
qualitatively by a peristaltic flow of two fluid systems
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in a channel with a porous peripheral layer and a
Newtonian fluid core layer.
The boundary conditions to be satisfied at the

interface of a two fluid system are the matching of
tangential velocity, normal velocity, shear stress and
normal stress. Beavers and Joseph (1967) have investi-
gated the fluid flow at the interface between a porous
medium and fluid layer in an experimental study and
proposed a slip in velocity at the interface. There exist
numerous subsequent studies in the literature which
suggest different boundary conditions at the interface
between porous and fluid layers (Chen and Chen, 1992;
Neale and Nader, 1974; Poulikakos and Kazmierczak,
1987; Saffman, 1971; Vafai and Kim, 1990). Ochoa-
Tapia and Whitaker (1995) introduced a boundary
condition which accounts for the jump in the shear
stress at the interface between a porous and fluid layer
by applying a sophisticated volume averaging technique
and this resolves the problem of over determining the
physical problem discussed by Nield (1991) and Vafai
and Kim, (1995). Kuznetsov (1996,1997) utilized the
significance of the shear stress jump condition at the
interface to discuss the fluid flow in a channel partially
filled with a porous medium. Recently Alazmi and Vafai
(2001) investigated the fluid flow and heat transfer
between a porous medium and a fluid layer by
considering various types of interfacial matching of
shear stress conditions proposed in the literature.
The mathematical modeling of the two-fluid system

involves the determination of the interface between the
core and peripheral layers. Peristaltic transport in two
immiscible layers of fluid has been investigated for a
channel by Brasseur et al. (1987), and for a circular tube
by Ramachandra Rao and Usha (1995). They deter-

mined the interface by considering mass conservation in
both core and peripheral layers independently and a
similar analysis is followed in this paper.
In the present investigation, we study the peristaltic

transport of two-layered system with a porous periph-
eral layer and a core viscous fluid. The Brinkman
extended Darcy equations have been considered for the
porous medium and the shear stress jump boundary
condition of Ochoa-Tapia and Whitaker (1995) is used
at the interface between porous and fluid regions
together with continuity of velocity and normal stress
conditions. The interface is determined by solving a
transcendental equation, derived through the conserva-
tion of mass in both core and peripheral region, using
Matlab packages. The trapping and pumping character-
istics are discussed for different new parameters, such as
Darcy number Da; porosity e; and shear stress jump b
arising due to a porous peripheral layer. In the limit
Da-N; we recover the results of Brasseur et al. (1987)
for two viscous fluid layers.

2. Mathematical formulation

Consider the peristaltic transport in a two dimen-
sional channel, with a porous medium in the peripheral
layer and an incompressible Newtonian fluid in the core
region, Fig. 1. We assume the porous medium is
isotropic and homogeneous. The channel wall is flexible
and an infinite wave train is moving on the walls of
amplitude b and wavelength l in the axial direction with
a constant speed c: The walls are taken by Y ¼
7HðX � ctÞ in Cartesian coordinate system ðX ;Y Þ with
t as the time. The mean width of the channel is 2a and
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Nomenclature

X ; Y Cartesian coordinates in the laboratory frame
x; y Cartesian coordinates in the wave frame
a half mean width of the channel
b amplitude of the peristaltic wave
c speed of the peristaltic wave
HðX � ctÞ travelling wave form in the laboratory

frame
H1ðX � ctÞ interface wave form in between the core

and peripheral layer
Ui; Vi velocity components in the laboratory frame,

i ¼ 1 denotes the core and i ¼ 2 denotes the
peripheral layer

ui; vi velocities components in the wave frame
pi; Pi pressure in the core and peripheral layer
ci stream function in the wave frame
m1; m2 core and peripheral layer viscosities
r1; r2 core and peripheral layer densities

e porosity
k permeability
Re; Da Reynolds number and Darcy number
b shear-stress jump constant
f ratio of amplitude of the wave to the half

mean width of the channel
r ratio of density of peripheral layer to the core

layer
m the ratio of viscosity of peripheral layer to the

core layer
h; h1 non-dimensional peristaltic wave form and the

interface wave form
d ratio of half mean width of the channel to the

wavelength
DP dimensionless pressure drop across the wave-

length
%Q dimensionless time averaged flux in the

laboratory frame
g the initial value of the interface
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