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a b s t r a c t

This paper presents a mathematical model-approach to describe and quantify patient-response to changes

in ventilator support. The approach accounts for changes in metabolism (V̇O2, V̇CO2) and serial dead space

(VD), and integrates six physiological models of: pulmonary gas-exchange; acid–base chemistry of blood, and

cerebrospinal fluid; chemoreflex respiratory-drive; ventilation; and degree of patients’ respiratory muscle-

response.

The approach was evaluated with data from 12 patients on volume support ventilation mode. The mod-

els were tuned to baseline measurements of respiratory gases, ventilation, arterial acid–base status, and

metabolism. Clinical measurements and model simulated values were compared at five ventilator support

levels.

The models were shown to adequately describe data in all patients (χ2, p > 0.2) accounting for changes

in V̇CO2, VD and inadequate respiratory muscle-response. F-ratio tests showed that this approach provides a

significantly better (p < 0.001) description of measured data than: (a) a similar model omitting the degree of

respiratory muscle-response; and (b) a model of constant alveolar ventilation. The approach may help predict

patients’ response to changes in ventilator support at the bedside.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Setting mechanical ventilation (MV) is difficult, with suboptimal

settings increasing the risk of overloading the respiratory muscles,

lung injury and organ system failure [1–3]. MV can be seen as a trade-

off between conflicting goals [4], including the balance between: poor

oxygenation and oxygen toxicity, ventilator induced lung injury and

acidosis; and in support modes of ventilation, respiratory stress and

effects of prolonged MV. Computer-based protocols have been de-

veloped to assist in setting the ventilator, encouraging reduction in

support without overly stressing patients and keeping them within a

comfort zone or maintaining minimal work of breathing [5–7]. These

systems have shown to reduce weaning duration [8,9], and shown to

reduce MV time and length of stay in the ICU [8]. These systems have a

limited representation of patients’ physiology and, hence cannot per-

form predictions of patient-response following changes in support.

Model-based description of patients’ respiratory response may

help in predicting the effects of changes in ventilator support. This
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is not trivial, as patients may respond in several different ways to

changes in MV, often resulting in changes in respiratory frequency

(fR), tidal volume (VT) and blood acid–base status [10–13]. Patients

may compensate reduced support by breathing more deeply with a

greater muscle generated negative pressure (Pmus) [12,14]. Alterna-

tively, patients may breathe more often [10], resulting in rapid shal-

low breathing at the extreme. Patients may combine these effects,

or if having inadequate muscle strength, may reduce ventilation, and

increase arterial partial pressure of CO2 (PaCO2) [11,15]. Describing

patient-response is complicated further, as changes in ventilator set-

tings affect physiological conditions. Reducing support may increase

respiratory effort, and CO2 production (V̇CO2), requiring higher alve-

olar ventilation (V̇A) to maintain acid–base status. Reducing VT may

decrease the anatomical serial dead space (VD), and as the VD/VT ratio

is relatively constant, therefore, V̇A can be achieved with less minute

ventilation (V̇E) [16].

A simple model-based approach describing patient-response to

changes in ventilator support, therefore, requires to integrate models

of pulmonary gas-exchange, lung mechanics, blood acid–base, and

respiratory-drive. Integrating such models and evaluating their abil-

ity to simulate patient-response to changes in ventilator support, has

not previously been performed. Previous modeling approaches have
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either: (a) combined some or all of the necessary components, focused

on the effects of changing inspired fraction of O2 or/and CO2 (FIO2, and

FICO2) in healthy subjects [17–19]; (b) have performed simulations in

relation to MV, but focused only on pulmonary gas-exchange or/and

lung mechanics [20–24]; (c) have implemented black-box control sys-

tem models with physiological components to simulate patients on

MV [25,26]; or (d) have focus on understanding a specific physiologi-

cal process in relation to changes in ventilation, such as cerebral blood

flow [17,19], pulmonary blood perfusion [27], functional residual ca-

pacity [28], periodic breathing [29–31] or respiratory-drive during

exercise [13,32].

Recently, we have formulated a simple model describing patient-

response to changes in support ventilation [4,33]. The aim of this

paper is to present and evaluate the application of this model to

describe and quantify patient-response to changes in volume support

ventilation. As this model enables simulation of patients’ end tidal CO2

(FECO2), fR, and arterial pH (pHa) at different VT levels, it is evaluated

whether these simulations adequately describe measured data.

2. Methods

This section presents a model-approach to describe and quantify

patient-response to changes in support ventilation and a clinical pro-

tocol to evaluate this approach. The approach includes a set of math-

ematical models, and the following clinical measurements, which are

required to identify model parameters: end tidal O2 (FEO2); FECO2;

oxygen uptake (V̇O2); V̇CO2; VT; fR; and a measurement of arterial

blood gases (ABG). All of these measurements are available from rou-

tine data plus measurement of indirect calorimetry, available for cer-

tain monitoring systems and ventilators [34].

2.1. Model description and tuning at baseline conditions

Fig. 1 illustrates the set of mathematical models which are used

to describe patients’ current state, and simulate patient-response to

changes in ventilator support. The relationship between each model’s

Fig. 1. Relationship between clinically available measurements and the set of models

used to simulate patients’ response to changes in mechanical ventilation. The mod-

els included are: pulmonary gas-exchange, acid–base chemistry of blood, acid–base

chemistry of cerebrospinal fluid (CSF), chemoreflex respiratory-drive, muscle function

and ventilation. Each model is calibrated to patient-specific conditions through the

model parameters i.e. shunt fraction (fs), V̇/Q̇ mismatch, BE, DPG, SIDcsf, TC, fM and

VD. The resulting variables from each model that link the models together, i.e. PaO2,

PaCO2, pHa, pHcsf, V̇Aexp and V̇A, are illustrated inside arrows. The relationship be-

tween models and clinically available measurements (FEO2, FECO2, V̇O2, V̇CO2, pHa,

PaO2, PaCO2, Hb, HbMet, HbCO, VT and fR) are illustrated with thin arrows.

inputs and outputs along the chain of respiratory control is illustrated

by the wide arrows in Fig. 1. The thin arrows indicate measured vari-

ables needed for tuning each model at baseline conditions for the

individual patient. In order to summarize inputs and outputs, the

following equations((1)–(5)) are mathematical functions describing

each model. Further details of the models are given in the electronic

appendix.

Eq. (1) represents a model of pulmonary gas-exchange describing

the relationship between FEO2 and FECO2 and the arterial partial pres-

sure of O2 (PaO2) and PaCO2 [35,36]. This model is tuned using: FEO2;

FECO2; V̇O2; V̇CO2; PaO2, and PaCO2 from a single ABG; and three

to five measurements of pulse oximetry (SpO2) taken at three to five

FIO2 levels obtained from a 10–15 min procedure [37]. These data are

required to estimate the pulmonary gas-exchange model parameters

i.e. shunt fraction (fs), low and high ventilation-perfusion (V̇/Q̇) ra-

tios. Parameter values have been shown to be uniquely identifiable

from these measurements [35,36].

PaO2, PaCO2 = gas exchange (FEO2, FECO2) (1)

Eq. (2) represents a model of blood acid–base chemistry describing

the relationship between PaO2 and PaCO2, oxygenation and acid–base

variables [38–40]. This model is tuned using: pHa; PaO2; PaCO2; ar-

terial oxygen saturation (SaO2); bicarbonate concentration (HCO3
−);

and hemoglobin concentrations (Hb, HbMet, HbCO) taken from a sin-

gle ABG; V̇O2; and V̇CO2. These data are required to estimate model

parameters i.e. base excess (BE), describing blood acid–base status,

and concentration of 2,3-diphosphoglycerate (DPG), describing the

relationship between PaO2 and SaO2 on the oxygen dissociation curve.

V̇O2 and V̇CO2 describe the effects of metabolism and respiration on

oxygenation and blood acid–base at baseline [40]. BE and DPG are

uniquely identifiable from a single ABG measurement as described

previously [38,41].

pHa, SaO2 = blood acid base (PaO2, PaCO2) (2)

Eq. (3) represents a model of cerebrospinal fluid (CSF) acid–base

chemistry describing the relationship between PaCO2 and the acid–

base status of CSF [42,43]. This model is tuned using PaCO2 taken

from a single ABG. PaCO2 is used in the model to calculate: CSF partial

pressure of CO2 (PcsfCO2); and the mixed venous bicarbonate con-

centration (HCO3,0
−), which in turn is used to calculate the model

parameter CSF strong ion difference (SIDcsf) [33] (see the electronic

appendix). SIDcsf describes patients’ respiratory-response corre-

sponding to current metabolic state [44,45]. This is particularly rele-

vant in COPD where high arterial BE and HCO3
− increase SIDcsf and

reduce chemoreflex respiratory-drive. SIDcsf is uniquely identifiable

for a single value of PaCO2.

pHcsf = CSF acid base (PaCO2) (3)

Eq. (4) represents a model of chemoreflex respiratory-drive de-

scribing the relationship between the net effects of acid–base and

oxygenation in blood and CSF on the expected alveolar ventilation

(V̇Aexp) [17,18,42]. This model is tuned using: pHa taken from a sin-

gle ABG, V̇O2, and V̇CO2. These data are required to estimate the

model parameter Threshold of the Central chemoreflex respiratory-

drive (TC), i.e. the CSF hydrogen ion concentration at which venti-

lation is increased due to the central respiratory-drive [33,42]. TC is

estimated by a numerical optimization process which simultaneously

solves Eqs. (1)–(4), with V̇O2, and V̇CO2, calculating pHa and minimiz-

ing the difference between simulated and measured values of pHa.

TC is uniquely identifiable for single values of pHa and SIDcsf [33].

V̇Aexp = respiratory drive(PaO2, pHa, pHcsf) (4)

Eq. (5) represents a model of ventilation that describes the rela-

tionship between V̇A, V̇E, VD and fR. This model is tuned using: V̇CO2,

FECO2, FICO2, VT and fR. These data are used to simultaneously solve
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