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a b s t r a c t

The non-stationary property of electromyography (EMG) signals in real life settings usually hinders the clinical

application of the myoelectric pattern recognition for prosthesis control. The classical EMG pattern recognition

approach consists of two separate steps: training and testing, without considering the changes between

training and testing data induced by electrode shift, fatigue, impedance changes and psychological factors,

and often results in performance degradation. The aim of this study was to develop an adaptive myoelectric

pattern recognition system, aiming to retrain the classifier online with the testing data without supervision,

providing a self-correction mechanism for suppressing misclassifications. This paper presents an adaptive

unsupervised classifier based on support vector machine (SVM) to improve the classification performance.

Experimental data from 15 healthy subjects were used to evaluate performance. Preliminary study on intra-

session and inter-session EMG data was conducted to verify the performance of the unsupervised adaptive

SVM classifier. The unsupervised adaptive SVM classifier outperformed the conventional SVM by 3.3% and

8.0% for the combination of time-domain and autoregressive features in the intra-session and inter-session

tests, respectively. The proposed approach is capable of incorporating the useful information in testing data

to the classification model by taking into account the overtime changes in the testing data with respect to the

training data to retrain the original classifier, therefore providing a self-correction mechanism for suppressing

misclassifications.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Among the potential biological signals for human–machine inter-

action (brain, nerve, and muscle signals), electromyography (EMG),

directly reflect the human motion intention, may be the only experi-

mentally non-invasive record of the motor commands to the muscles

that allows applications in routine clinical use. As a noninvasive mea-

surement containing rich motor control information, surface elec-

tromyogram (EMG) signal is an important input for the control of

power prostheses, known as myoelectric control [1]. Conventional

myoelectric control systems enable users to operate a single device

such as a hand or a wrist in an on–off mode or proportional control

strategy. Controlling a multiple degree of freedoms (DOFs) prosthetic

devices requires more sophisticated technique for identification of

various movement intentions from the recorded EMG [2–5]. Because

of the inherent non-stationary of EMG signals, the possible EMG vari-

ation induced by these factors such as electrode condition, muscle

fatigue and so on is a big challenge, which hinders the commercializa-
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tion of myoelectric controlled prosthetic devices that was developed

in a laboratory environment.

While the myoelectric pattern recognition strategy is a promising

approach to controlling the multiple DOFs of a multifunctional dex-

terous prosthesis [6,7], these studies reported low error in a single

session, however, robustness over time has rarely been evaluated [8].

Conventional pattern recognition methods are usually accomplished

in two independent parts, training and testing steps. The parame-

ters acquired in the training contain limited information because the

training EMG data are normally acquired at one time during a short

period, which are not representative for the whole period includ-

ing testing step. Enlarging the EMG recordings in training step that

contains more information may be impractical, because it is time-

consuming therefore adding additional burden to the users. So far,

no clinically prosthetic system utilizing myoelectric pattern recogni-

tion control has been commercialized because of the unsatisfactory

performance of these existing myoelectric pattern recognition algo-

rithms in real life settings [2] due to the variations in EMG signals

in the testing data with respect to the training data, induced, e.g.

by electrode shifts [9,10], arm position changes [11,12], fatigue [13],

time-related effects [14].

Training a robust myoelectric pattern recognition system is crit-

ical due to the changes of EMG signal properties occur over sessions.
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Especially the myoelectric pattern recognition system may have to be

retrained if changes in EMG signal properties are substantial. To ac-

count for changes, recent studies attempted to use adaptive learning

schemes by including testing data into the classifier’s training data

set [15–17]. However, unsupervised adapting existing myoelectric

pattern recognition systems to the overtime changes remains a chal-

lenging open problem. Therefore, it is required to develop an adaptive

classification algorithm. In particular, it is motivated to incrementally

retrain the classifier online with the testing data by taking into

account real-time changes in the testing data with respect to the

training data.

The current study seeks to develop an adaptive myoelectric pat-

tern recognition system, aiming to retrain the classifier online with

the testing data without supervision, thus incorporating the changes

in the testing data with respect to the training data, therefore provid-

ing a self-correction mechanism for suppressing misclassifications. To

achieve this goal, a novel myoelectric pattern recognition approach

based on the incremental learning adaptive support vector machine

(SVM) is proposed.

2. Methods

2.1. Data set description

The data used in this study are identical to the data in a previ-

ous study [18]. Eight-channel EMG data were collected from forearm

muscles and the biceps muscle of healthy subjects using Ag-AgCl

electrodes. Fig. 1 illustrates the placement of the electrodes, using the

right arm as an example. The surface EMG signals were sampled at

3000 Hz per channel. Subjects performed six forearm motions plus

rest: hand open, hand close, supination, pronation, wrist flexion, wrist

extension and rest. EMG data used in this study were collected from

15 subjects during two sessions completed on two separate days, and

five trials were acquired within each session. Each motion was re-

peated four times with duration of 3 s within each data collection

trial. The order of these motions was randomized.

2.2. Incremental learning adaptive SVM

The classical SVM classifier was extended to the incremental learn-

ing adaptive SVM classifier, since the SVMs are popular classifiers em-

ployed widely in pattern recognition studies [19–21]. Given the initial

training data T consisting of N samples Xj ∈ Rn, j = 1, 2, . . . , N, labeled

by yj ∈ {1,−1}, an initial SVM classifier was trained from T by

min
w,b,ξP

1

2
‖w‖2 + C

N∑
j=1

ξj

s.t. yj(〈w, Xj〉 − b) ≥ 1 − ξj, ξj ≥ 0, j = 1, 2, . . . , N (1)

Fig. 1. Illustration of the surface electrode placement on the right arm. Eight surface

electrodes (Myotronics, 6140 ) were placed around the forearm and the biceps, with

the electrodes indexed 3, 4, 5, 6, 7 being equally spaced along the circumference of the

forearm longitudinally along the muscle fiber approximately one-third the distance

between the elbow and wrist. The right panel shows the lateral view of the electrodes

with only three electrodes being visible. The left panel shows the medial view of the

electrodes for the other electrodes. A ground reference electrode (3 M, 2237) was

placed on the wrist.

The SVM computes a decision function f (Xj) = 〈w, Xj〉 + b such

that the sign of the decision function is employed to predict the

label of a test sample Xk ∈ Rn. Xk is classified by zk = sign(f (Xk)).
In addition, for the estimation of class label, the posterior class

probability pk = P(yk = zk|Xk) can be computed, because the SVM

output score can be transformed into the probability estimate using

sigmoid transformation [22]. The predicted class label obtained by

the posterior class probability is then used for incorporating the

testing sample and continuously adapts the classifier.

For this study, Platt’s posterior probabilistic output [22] in con-

junction with pairwise coupling was employed to obtain k multiclass

probability estimates. For the binary SVM of ith and jth classes, given

the any sample X and the class label y, let ri,j be the estimates of

pairwise class probabilities ui,j = P(y = i|y = i or j, X). An improved

implementation of Platt’s posterior probability estimation algorithm

based on Newton’s method with backtracking line search [23] was

utilized to approximate ri,j by a sigmoid function.

ri,j = P(i|i or j, X) = PA,B(f̂ ) = 1

1 + eAf̂+B

where f̂ = f (X) (2)

where A and B are estimated by minimizing the negative log-

likelihood function, and f̂ are the decision values of training data.

Consequently, a multi-class probability can be estimated by com-

bining all pairwise coupling comparison [24]. From the ith and jth

classes of a training set, a model is obtained which, for any new X,

calculates ri,j as an approximation of ui,j. Then, given all ri,j, the goal

is to estimate pi = P
(
y = i|X)

, i = 1, 2, . . . , k for k classes.

According to [24], optimization formulation is given as follows:

min
P

k∑
i=1

∑
j:j �=i

(rjipi − rijpi)
2

s.t.

k∑
i=1

pi = 1 (3)

The objective function of (3) can be written as

min
P

2PT QP = min
1

2
PT QP

where Qij =
⎧⎨
⎩

∑
s:s�=i

r2
si if i = j

−rjirij if i �= j

⎫⎬
⎭ (4)

Any optimal solution P is a vector of multi-class probability es-

timates. The objective function (4) is a linear-equality-constrained

convex quadratic programming problem. Subsequently, an optimal

solution P is a global minimum only if it satisfies the optimality con-

dition: There is a scalar b such that[
Q e

eT 0

] [
P
b

]
=

[
0
1

]
(5)

where b is the Lagrangian multiplier of the equality constraint∑k
i=1 pi = 1, e is the K × 1 vector of all ones and 0 is the K × 1 vector of

all zeroes. Therefore, P the solution to (3) can be obtained by solving

a simple linear system (5).

As T changes during retraining, Eq. (1) needs to be solved con-

sequently online. Thus the incremental learning method [25] was

employed to train the SVM classifier incrementally using the L1 soft

margin approach and adapt the classifier to changes via regularization

and kernel parameters. Sequential minimal optimization (SMO) is not

feasible when used online, because the solution for Eq. (1) needs to

be computed from scratch each time T changes [26]. In contrast, the

method described in a previous study [25] was used in the current

study to train an SVM and incrementally update the solution for Eq. (1)

each time when a new testing sample is added and therefore incre-

mentally update the solution every time a new sample is added. All

individual classifiers update each time for multi-class classification.
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