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a b s t r a c t

Recent advances in the use of inertial measurement units (IMUs) for motion analysis suggest the possibility

of using this technology for the monitoring of daily activities of individuals during rehabilitation post-stroke.

Previous studies have utilized features extracted from accelerometer and gyroscope signals to develop classi-

fication models capable of identifying activities performed within large datasets. In this study, nine k-nearest

neighbor cross-validated classifiers were developed using frequency-features derived from shank-mounted

IMUs on the less-affected and affected limbs of subjects with stroke. These classifiers were evaluated for two

separate datasets of post-stroke gait; the first a classification of three separate gait activities (overground

walking, stair ascent, and stair descent), and the second a classification of five gait activities, overground

walking, stair ascent, and descent with a distinction between stepping pattern used while negotiating stairs

(step-over-step (SOS) and step-by-step (SBS)). The comparison showed the highest classification accuracy,

100% for the three-activities and 94% for the five-activities, was obtained using a classifier composed of fea-

tures derived from accelerometer and gyroscope measurements from both IMUs on less-affected and affected

limbs.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Currently, healthcare professionals gain insight into individuals’

daily activity levels mostly through self reported measures and ques-

tionnaires, yet these methods have been proven to overestimate

physical ability and are thus considered unreliable as a substitute

to physical examination [11,12]. Systems capable of monitoring indi-

viduals’ activities and rehabilitation progress outside on a day-to-day

basis are therefore gaining popularity within the fields of rehabili-

tation [3]. Inertial measurement units (IMUs) present a low-cost and

minimally intrusive way of measuring gait parameters in both healthy

and disabled individuals [7,15]. These sensors provide rehabilitation

professionals the possibilities to quantitatively measure changes in

gait, in aging populations as well as in those aiming to return to a

level of physical activity after rehabilitation. However, in order to use

this technology for monitoring daily activities, effective algorithms

are required to classify specific activities.

Activity classification using inertial sensors has recently been the

subject of many studies [1,4,9] and studies have shown that machine

learning approaches have proven effective in the identification of dif-

ferent activities from acceleration data [9,13]. The majority of these

approaches involve a two-stage process [9]. In the first stage, classi-
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fication features are derived from a series of smaller, sequential time

windows of sensor signals. A classification algorithm is then used

on the extracted features to associate each window with a specific

activity. In order to generate the features from accelerometer data

for the classification algorithm, different approaches have been sug-

gested in previous studies, including directly deriving time-domain

features from the acceleration signal [4], the use of Fourier transforms

to derive features from a frequency analysis [8], or the use of wavelet

analysis for the derivation of time-frequency features [10,13].

Time-domain features can be obtained through the calculation of

statistical measures such as mean or median, taken directly from a

window of accelerometer data [9]. These features can also be ob-

tained by using high and low pass filters to separate accelerometer

signals into their AC and DC signal components. Classifiers can then

be identified based on these features for each condition [4]. A sec-

ond method to get classification features from accelerometer data

is through the derivation of frequency-domain features through the

use of fast Fourier transform (FFT). The applied FFT to a specific win-

dow of accelerometer data typically yields a set of basis coefficients

which represent the amplitudes of the signal’s frequency compo-

nents as well as the distribution of the signal’s energy [5]. Various

methods of using the derived frequency components for activity clas-

sification based on accelerometer data have been presented in pre-

vious studies [1,4,8,9]. Preece et al. proposed a unique feature set

in addition to those previously suggested, composed of the magni-

tudes of the first five components of the FFT power spectrum [8].
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Although each of these studies employed a different approach in us-

ing frequency-domain features for gait activity classification, each FFT

derived feature set was reported to effectively predict gait activities

in its respective classifier. Wavelet analysis has also been used for

activity classification [9]. A main advantage of using wavelet analy-

sis to extract features from accelerometer signals is that no time or

frequency information is lost from the original signal. Various sets of

wavelet features have been used in previous studies for the classifi-

cation of activities recorded using accelerometers [10,12]. In both of

these studies, clear distinction in wavelet features between activities

was shown. Therefore, this method offers promise for the detection

of dynamic changes in gait.

Although all three methods of generating features capable of clas-

sifying activities from accelerometer data have proven valid, Preece

et al. performed a comparative study of 14 methods of extracting

classification features using wavelet, time-domain, and frequency-

domain analysis to determine which method would best serve for

the classification of different gait activities [8]. Preece et al. found

that the use of an FFT feature set composed of the magnitude of the

first five or more components of the FFT analysis was optimal for

activity classification in healthy individuals. Preece et al. therefore

suggested the use of FFT feature set for classification of activities

including level walking, stair ascent, stair descent, jogging, running,

hopping, and jumping from accelerometer data collected using ankle-

mounted sensors. However, little effort has attempted to classify gait

activities with kinematic data collected from non-healthy subjects,

therefore it is our goal to apply these classification methods to gait

post-stroke.

The main objective of this study was to develop and compare an

activity recognition algorithm for mobility in level ground, stair as-

cent, and stair descent activities in individuals presenting with post-

stroke hemiparesis. Our first aim was therefore to develop an activity

classification algorithm using multiple sets of FFT features derived

from shank-mounted IMU sensors capable of identifying overground

walking, stair ascent, and stair descent by individuals presenting with

post stroke hemiparesis. As a second aim, we sought to extend activity

classification to include varying stepping patterns adopted by stroke

survivors during stair negotiation. This distinction could serve to pro-

vide additional information to rehabilitation professionals as to the

stair stepping strategies employed by individuals day-to-day while

rehabilitating.

2. Methodology

2.1. Data collection protocol

Ten chronic, hemiparetic stroke survivors (67.0 ± 10.9 years), self-

reporting to be in good health and capable of independent ambula-

tion and stair negotiation after a minimum of six months post-stroke,

were recruited for this study. All subjects provided informed consent

to participate in the protocol, which was approved by Queen’s Uni-

versity’s research ethics board. Seven subjects were left-side affected

and three were right-side affected. Subjects were instrumented with

seven IMUs (Xsens Technology B.V., Netherlands) and only those mea-

surements obtained from the accelerometer and gyroscope z-axes

from the shanks mounted IMUs were used in this study. Sensor con-

figuration can be seen in Fig. 1. Subjects completed up to three self-

paced walking trials along a straight hallway over a 10 m distance.

In addition to the overground walking trials, subjects ascended and

descended a sixteen-step staircase in a step-over-step (SOS) manner,

placing one foot on each stair, and a step-by-step (SBS) manner, plac-

ing both feet on the same stair, always leading with their less-affected

side, with handrail use as needed. Subjects were instructed to rest

prior to beginning each trial, and when they felt ready, maneuvered

the steps at a self-selected pace. In this way, five different activities

Fig. 1. Sensor configuration. An IMU is attached to the lateral aspect of both the less-

affected (light grey) and affected (dark grey) shanks in the sagittal plane. The z-axes

of both the accelerometer and gyroscope signals lay orthogonal to the sagittal plane

defined by the x and y directions. The arrows indicate positive direction of each axis.

(overground walking, stair ascent SOS, stair descent SOS, stair ascent

SBS, and stair descent SBS) were recorded for each subject outside of

a traditional laboratory setting. Data were collected using MVN Stu-

dio (Xsens Technology B.V., Netherlands) at a sampling frequency of

120 Hz.

2.2. Signal conditioning

Offline signal processing was performed using MATLAB (The Math-

Works, Natick, MA, USA). For each of the overground walking trials

and the stair ascent and descent trials, analysis was conducted on a

series of 2-s (240-sample) consecutive windows, with an overlap of

1 s between each. The decision to use a 2-s window was motived

by previous work by Wang et al. [13] (2.56 s) and by Preece et al. [8]

(2 s) that demonstrated this window length as appropriate for the fre-

quency analysis of similar activities to those used in this paper. Due

to the slow speed of post-stroke mobility, we chose a 2-s window,

which would sufficiently capture a minimum of one gait cycle in all

activities while not being so long as to limit the number of windows

that could be extracted from each trial. The 50% overlap between

consecutive windows has also been proven to be effective in previous

activity classification studies [1,8].

2.3. Frequency-domain feature derivation

The frequency-domain features for each 2-s window were derived

using FFTs. The FFT is a faster version of the Discrete Fourier Transform

(DFT), which transforms a discrete signal in the time domain into

its discrete frequency domain representation [5]. From each of the

shank-mounted IMUs, the accelerometer and gyroscope signals were

converted into the frequency domain using the Matlab fft function

seen in Eq. (1 ), to calculate the N-point DFT.

X(k) =
∑N−1

t=0
x(t)ωtk

N

ωN = e(−2π i)/N (1)

where ωN is an Nth root of unity, t is the time range for the data set

x(t) such that t = [0,1, . . . , (length of signal x-1)] × sampling time, k

is a discrete (integer) variable such that k = 0, 1, . . . , (N-1), and N is

the transform length which will optimize the FFT algorithm, defined

as 2N such that 2N ≥ |length (x)| (length (x) = 240, N = 8) [5].

As the frequency spectrum, X(k), calculated in Eq. (1) is symmetric,

only the first (1 + 2N-1) points of the spectrum will be unique, and the

rest are symmetrically redundant. X(1) is the DC component of the

original signal x(t) and X(1 + 2N-1) is the Nyquist frequency compo-

nent of x(t). In order to truncate the frequency data, it must first be
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