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a b s t r a c t

Comprehensive evaluation of results obtained using acoustic and contact microphones in screening for laryn-

geal disorders through analysis of sustained phonation is the main objective of this study. Aiming to obtain

a versatile characterization of voice samples recorded using microphones of both types, 14 different sets of

features are extracted and used to build an accurate classifier to distinguish between normal and patholog-

ical cases. We propose a new, data dependent random forests-based, way to combine information available

from the different feature sets. An approach to exploring data and decisions made by a random forest is

also presented. Experimental investigations using a mixed gender database of 273 subjects have shown that

the perceptual linear predictive cepstral coefficients (PLPCC) was the best feature set for both microphones.

However, the linear predictive coefficients (LPC) and linear predictive cosine transform coefficients (LPCTC)

exhibited good performance in the acoustic microphone case only. Models designed using the acoustic mi-

crophone data significantly outperformed the ones built using data recorded by the contact microphone. The

contact microphone did not bring any additional information useful for the classification. The proposed data

dependent random forest significantly outperformed the traditional random forest.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Automated analysis of voice signals is used increasingly in screen-

ing for laryngeal disorders [1–6]. Several parameters computed from

voice signals are a convenient way of documentation and quantifica-

tion of dysphonia changes and outcomes of therapeutic and surgical

treatment of laryngeal disorders [4,7–10]. Although voice recordings

have been carried out for many years in clinical practice, the debate

on microphone selection is still going on [11–13].

Vibrations from the vocal folds, generated during voice produc-

tion, are transmitted through the vocal tract to the skin surface and

can be sensed by contact microphones [14,15]. Thus, both acoustic
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and contact microphones can be used to record vibrations produced

by vocal folds. Contact microphones are considered being useful for

extraction of voice fundamental frequency [10], detecting glottal vi-

brations [16], recording subglottal pressure waves [17], estimating

sound pressure levels of voiced speech [16], and mapping neck sur-

face vibrations during vocalized speech [18].

Validity and reliability of acoustic measurements are highly af-

fected by a background noise [12,19]. Due to its vicinity to the

voice source, a contact microphone is less sensitive to background

noises and provides enhanced voice signal clarity in noisy environ-

ments [15,16,20–22]. It is suggested that an acoustic environment

should have a signal-to-noise ratio of at least 30 dB to produce valid

results in audio analysis [12]. This recommendation can be fulfilled

easily when voice recordings are performed in a special sound-proof

booth. However, this requirement can become not feasible when voice

recordings are obtained in an ordinary environment for voice disor-

ders screening task.

However, several studies with contact microphones revealed

decreased speech signal intelligibility compared to headset micro-

phones [15,21,22]. Moreover, contact microphones are not very
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effective in transmitting consonant sounds and high frequencies [23].

The elasticity properties of underlying human body tissues acting as a

low-pass filter with a 3 kHz cut-off frequency [22], limit the frequency

range of the resulting signal.

It was demonstrated that in case of non-stationary background

noise, use of contact microphones can significantly improve accu-

racy of separation between voice recordings obtained from healthy

subjects and subjects experiencing voice-related problems [24–26].

By using recordings from both types of microphones, Dupont

et al. [22] achieved 80% recognition accuracy when discriminating

between pathological and normal cases. Mubeen et al. [27] achieved

some increase in performance when combining features of one type

(weighted linear predictive cepstral coefficients) extracted from both

types of recordings. Erzin [28] proposed a new framework, which

learns joint sub-phone patterns of contact and acoustic microphone

recordings using a parallel branch HMM structure. Application of this

technique resulted in significant improvement of throat-only speech

recognition.

Numerous sets of features, emphasizing different properties of

voice signals, have been proposed for characterizing voice record-

ings [29]. Some feature sets may be more suitable for acoustic while

others for contact microphones. This study, based on a variety of

different features sets, investigates this issue. We also investigate if

significant gains in classification performance can be achieved from

various combinations of information obtained from microphones of

the two types. A way to explore decisions made by an automated

system, usually called a "black box", is also suggested.

We have chosen sustained phonation of vowel /a/ for the anal-

ysis, since steady-state phonation is simple, reduces variance in

sustained vowels and enables reliable computation of acoustic fea-

tures [9,30]. Moreover, sustained vowels are not influenced by speech

rate and stress, they typically do not contain voiceless phonemes, fast

voice onsets and terminations, and prosodic fluctuations in pitch and

amplitude [8]. Sustained vowel phonation is rather insulated from

aspects related to different languages.

2. Voice database

Voice samples were recorded in a sound-proof booth simultane-

ously using an acoustic and contact microphones. An acoustic cardioid

microphone AKG Perception 220 (AKG Acoustics, Vienna, Austria)

with frequency range from 20 Hz to 20 kHz was used in this study.

The acoustic microphone was placed at a 10 cm distance from the

mouth (the subjects were seated with a head rest), keeping at about

90◦ microphone-to-mouth angle. An omni-directional Triumph PC

(Clearer Communications Inc., Burnaby, Canada), placed on the pro-

jection of lamina of thyroid cartilage and fixed with elastic bail, was

used as a contact microphone. The frequency range of the contact

microphone is from 100 Hz to 16 kHz. The audio format was wav

(dual-channel PCM, 16 bit samples at 44 kHz rate), providing the

Nyquist frequency Fmax = 22 kHz.

A mixed gender database of 273 subjects (163 normal voices and

110 pathological voices), ranging from 19 to 85 years in age, was

used. The normal voice subgroup was composed of healthy volun-

teer individuals who considered their voice as normal. They had no

complaints concerning their voice and no history of chronic laryngeal

diseases or other long-lasting voice disorders. The voices of this group

of individuals were also evaluated as healthy voices by clinical voice

specialists. Furthermore, no pathological alterations in the larynx of

the subjects of the normal voice subgroup group were found during

video laryngostroboscopy. The pathological voice subgroup consisted

of patients who represented a rather common, clinically discrimina-

tive collection of laryngeal diseases, that is, mass lesions of vocal folds

and paralysis.

Table 1

Features sets used in the study, 927 features in total.

# Type of extracted features Size

1. Pitch and amplitude perturbation measures 24

2. Frequency (0–5000 Hz)a 100

3. Mel-frequency bandsb 35

4. Cepstral energyc 100

5. Mel-frequency cepstral coefficients 35

6. Autocorrelationd 80

7. Harmonics to noise ratio in spectral domain 11

8. Harmonics to noise ratio in cepstral domain 11

9. Linear predictive coefficients 77

10. Linear predictive cosine transform coefficients 77

11. Shape of signal envelopee 128

12. Levinson–Durbin reflection coefficients 24

13. Vocal tract area irregularity 71

14. Perceptual linear predictive cepstral coefficients 154

a Spectral energy in non-overlapping frequency bands of equal

width.
b ith feature is given by the weighted spectral energy in the ith

mel-window.
c Cepstral energy in non-overlapping frequency bands of equal

width.
d Autocorrelation sequence over the lag range from zero to the

half period of the main frequency.
e Several periods of a voice signal are averaged and represented

by the amplitude at 128 equally spaced points.

3. Methodology

The main goal of this study is a comprehensive comparison of use-

fulness of a large number of feature sets extracted from voice record-

ings acquired with acoustic and contact microphones in a laryngeal

pathology detection task. We also investigate if significant improve-

ment in pathology detection accuracy can be achieved by combining

information obtained from microphones of the two types. We use a

random forest (RF) [31] as a basic model to detect laryngeal pathol-

ogy and demonstrate how information available from this "black box"

type model can be used to explore data and decisions made by the

model.

3.1. Feature set

Aiming to obtain a comprehensive description, each audio record-

ing is represented by 14 feature subsets resulting in a feature vec-

tor of 927 elements, see Table 1. Technical details of feature subsets

1–11 can be found in [29]. A short description of the 12th, 13th and

14th feature subsets is given below. The last three feature subsets

were added to the previously used [29] aiming to increase diversity

of features.

3.1.1. Reflection coefficients and vocal tract area irregularity features

Vocal tract is modelled by M tubes and feature computation is

based on Mth order linear prediction filter. For each frame of voice

recording, mth order prediction error Em and area of mth tube Am are

computed using the Levinson–Durbin recursion algorithm:

Am = Am+1
1 + km

1 − km
, m = M, . . . , 2, 1 (1)

where AM+1 = 1 and km is the so-called Levinson–Durbin reflection

coefficient. The 12th feature set is given by the Levinson–Durbin re-

flection coefficients. To obtain the 13th feature set, for each tube,

the mean area Am, the variance of tube area Sm and the variance of

area ratio Smr are calculated using tube area values Amk computed for

different frames k of a voice recording [32]:

Am = 1

K

K∑
k=1

Amk, m = 1, . . . , M (2)
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