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a  b  s  t  r  a  c  t

T2 mapping  is  a powerful  noninvasive  technique  providing  quantitative  biological  information  of  the
inherent  tissue  properties.  However,  its clinical  usage  is  limited  due  to  the  relative  long  scanning  time.
This paper  proposed  a novel  model-based  method  to address  this  problem.  Typically,  we directly  esti-
mated  the  relaxation  values  from  undersampled  k-space  data  by exploiting  the  sparse  property  of
proton  density  and  T2 map  in  a penalized  maximum  likelihood  formulation.  An  alternating  minimization
approach was  presented  to estimate  the  relaxation  maps  separately.  Both  numerical  phantom  and  in  vivo
experiment  dataset  were  used  to demonstrate  the  performance  of  the  proposed  method.  We  showed
that  the  proposed  method  outperformed  the  state-of-the-art  techniques  in  terms  of  detail  preservation
and  artifact  suppression  with  various  reduction  factors  and  in  both  moderate  and  heavy noise  circum-
stances.  The  superior  reconstruction  performance  validated  its promising  potential  in  fast  T2 mapping
applications.

©  2014  IPEM.  Published  by  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

MR  relaxometry (e.g., T1/T2 mapping) provides a noninvasive
quantitative manner to access tissue structure and composition,
water content and iron levels. It is extensively used in research
studies of iron overload [1], cartilage disease [2], multiple sclerosis
[3], myocardial infarction [4], cancer [5,6], etc. However, one of the
major difficulties of its yet not being widely applied in clinic is the
relative long scanning time since usually multiple images need to
be acquired sequentially. Take the T2-weighted image series for
an example, the signal acquisition scheme can be mathematically
expressed as:

dl(k) =
∫

�l(x) exp(−i2�k · x) dx + nl(k)

where �l(x) is the desired image function at the l-th echo time.
dl(k) is the measured k-space data and nl(k) denotes the complex
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Gaussian noise. Conventional imaging methods require a fully sam-
pled k-space for all l.

Fast imaging techniques grounded on the theory of sparse
sampling have shown promising potential in accelerating MR
acquisitions. Prior information, mostly the image sparsity [7] and
spatiotemporal partial separability [8], has been exploited to con-
strain the solution space of the desired image function from the
undersampled data. Based on similar assumptions (i.e., sparsity
and partial separability), a number of sparse reconstruction meth-
ods [9–15] have been developed with various variations regarding
the image model, sparsifying transform, regularization, etc. Specif-
ically, authors in literature [9] proposed to learn an overcomplete
dictionary to sparsify the signal. The approach was verified in T1
and T2 mapping in the brain with highly reduced data. The study
in literature [10] used the smoothness of signal evolution in the
parametric dimension to accelerate variable flip angle T1 map-
ping. Similar idea was developed in literature [13] to enable fast T1
mapping of the mouse heart. In literature [11,12], principle com-
ponent decomposition played as the sparsifying transform along
the parametric direction, while it was  used to linearize the signal
model in literature [15]. In literature [14], the authors proposed
to model the entire image series as a partial separable function,
assuming that the spatial-parametric image matrix has a low rank.
All the above methods require a parameter fitting step afterwards

http://dx.doi.org/10.1016/j.medengphy.2014.06.002
1350-4533/© 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.medengphy.2014.06.002
http://www.sciencedirect.com/science/journal/13504533
http://www.elsevier.com/locate/medengphy
http://crossmark.crossref.org/dialog/?doi=10.1016/j.medengphy.2014.06.002&domain=pdf
mailto:dong.liang@siat.ac.cn
dx.doi.org/10.1016/j.medengphy.2014.06.002


X. Peng et al. / Medical Engineering & Physics 36 (2014) 1428–1435 1429

to extract the relaxation values (i.e., T1, T2) based on the intrin-
sic parametric model. Generally, the relaxation values are obtained
by performing pixel-wise single exponential curve least square fit-
ting. More accurate estimation can be achieved by using advanced
technique considering the Rician distribution of the magnitude
data [16]. However, since the procedure of sparse reconstruction
is nonlinear, unpredictable errors would occur with large reduc-
tion factors and noisy measurements. These errors could probably
further propagate into the subsequent parameter estimation.

Another type of approach for parameter mapping from under-
sampled measurements is the model-based (MB) reconstruction
method [17–21], which directly estimates the relaxation values
from the undersampled k-space data. The superior performance
of the MB  method owes to the fact that the number of unknowns
in the relaxation map  is much less than the total number of image
pixels in the image series. Additionally, prior knowledge can also
be employed to reduce artifacts and further improve the recon-
struction quality. For instance, the work in reference [18] used total
variation to promote image sparsity and authors in reference [19]
penalized the L2 norm of the finite differences of the relaxations’
Fourier transform to enforce smoothness of the relaxation map.

In this work, we proposed an alternating minimization method
for model-based proton density and T2 mapping with parameter
sparsity constraint (AM-MBPS). Typically, parameter sparsity,
modeled as the L1 norm of corresponding sparse coefficients, was
penalized to promote the sparsity of proton density and T2 map
simultaneously. Each relaxation map  was estimated separately in
an alternating minimization fashion (i.e., keep one fixed while solv-
ing for the other). Thus, on top of the MB  method, the proposed
MBPS method may  significantly reduce the required number of
measurements and improve reconstruction quality.

A similar approach was taken and reported recently, and inde-
pendently, by Zhao et al. [21]. Basically, there are three differences
distinguishing the two  works. First, according to the formulation
in [21], only the sparsity constraint of the T2 map  was  penalized,
which is relatively easier to implement since only one regulariza-
tion parameter need to be tuned. But regularizations on both proton
density and T2 map  as in our work will result in more improved
reconstruction. Secondly, the proton density and T2 map  were esti-
mated jointly in [21] while we propose to solve them separately.
Joint estimation may  cause a poorly scaled problem as described
in the discussion. Thirdly, we formulated the reconstruction as an
unconstraint L1 norm minimization problem while the authors in
[21] formulated it as a L0 quasi-norm constrained optimization
problem. Though efficient greedy algorithms can be used to solve
the L0 quasi-norm problem, the exact sparsity level of the relaxation
map  may  not be known as a prior.

2. Materials and methods

2.1. Model-based formulation

With proper discretization, the image acquisition scheme can
be expressed in matrix-vector form as:

dl = Fu�l + nl (1)

where dl ∈ C
M×1 and �l ∈ C

N×1 are the undersampled measure-
ments and desired T2-weighted image at the l-th echo time
respectively. l = 1, 2, . . .,  L, L is the echo train length and N is the
total number of image pixels. Fu ∈ C

M×N denotes the undersam-
pled Fourier encoding matrix with M � N. nl is the observation
noise. Given the assumption that nl is complex white Gaussian, the

maximum likelihood solution of �l can be obtained by solving the
simple least-squares problem:

(
�̂1, �̂2, ..., �̂L

)
= arg min

�1,�2,...,�L

L∑
l=1

∥∥Fu�l − dl

∥∥2

2
(2)

In T2 mapping, the image function �l generated using a standard
Carr-Purcell-Meiboom-Gill (CPMG) spin echo can be written as:

�l = �PD · exp(−l�t� + i�) (3)

where �PD ∈ R
+N×1 represents the proton density distribution func-

tion, �t is the echo time spacing, � is the image phase shared by
the image series. � ∈ R

+N×1 denotes the R2 map. Operator · stands
for element-wise multiplication. Substituting Eq. (3) into Problem
(2), the maximum likelihood estimates of the relaxations can be
obtained as:

(�̂0, �̂)  = arg min
(�0,�)

L∑
l=1

∥∥Fu�0 · exp(−l�t�) − dl

∥∥2

2
(4)

where �0 = �PD · exp(i�). The proton density and T2 map  can be
obtained afterwards via �PD =

∣∣�0

∣∣ and T2 = 1./�.

2.2. Proposed method

In this work, we  assumed that the relaxation maps could be
sparser than conventional MR  images. This is probably because the
content of conventional MR  images is affected by several factors,
including the intrinsic contrast mechanism (i.e., proton density T1,
T2, T2* weighting) and the hardware conditions (i.e., coil sensitivity,
B0 inhomogeneity). While the quantitative relaxation map acces-
sing each contrast component is solely tissue property dependent.
The relaxation map  should be sparser since the signal variation in
each contrast component is much less than that in conventional
MR images.

Thus, we propose to incorporate the sparsity constraint of pro-
ton density and T2/R2 map  into the MB  formulation, yielding a
penalized maximum likelihood solution:

(�̂0, �̂)  = arg min
(�0,�)

L∑
l=1

∥∥Fu�0 · exp(−l�t�) − dl

∥∥2

2
+ �1

∥∥�w�0

∥∥
1

+ �2

∥∥D�
∥∥

1
(5)

L1-regularization was  employed to enforce sparsity. Appropri-
ate sparsifying transforms were selected for proton density and the
R2 map. Typically, �w ∈ C

N×N is the wavelet transform (Daubechies
4) and D =

[
Dx, Dy

]
with Dx and Dy denoting the forward finite

difference operators on the first and second coordinates respec-
tively. Other sparsifying transforms are also feasible. �1 and �2 are
regularization parameters controlling the trade-off between data
consistency and sparsity constraint.

To solve problem (5), we employed an alternating minimization
approach. Specifically, the solution of problem (5) was found by
iteratively solving the following two sub-problems:

�̂(k)
0 = arg min

�0

L∑
l=1

∥∥∥Fu�0 · exp(−l�t�(k)) − dl

∥∥∥2

2
+ �1

∥∥�w�0

∥∥
1

(6)

�̂
(k+1) = arg min

�

L∑
l=1

∥∥Fu�0
(k) · exp(−l�t�) − dl

∥∥2

2
+ �2

∥∥D�
∥∥

1
(7)
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