## **ARTICLE IN PRESS**

NANO-01377; No of Pages 15



01

O2 O3

10

12

13

14

15 16

17

18 19

20 21

22

23 24 Nanomedicine: Nanotechnology, Biology, and Medicine xx (2016) xxx – xxx



nanomedjournal.com

### Magnetic nanomaterials and sensors for biological detection

Agnieszka Sobczak-Kupiec<sup>a,\*</sup>, Jayachandran Venkate<sup>b</sup>, Adnan AlHathal<sup>c</sup>, Dorota Walczyk<sup>a</sup>, Ammad Farooqi<sup>d</sup>, Dagmara Malina<sup>a</sup>, Seyed Hossein Hosseini<sup>e</sup>, Bozena Tyliszczak<sup>f</sup>

<sup>a</sup>Institute of Inorganic Chemistry and Technology, Cracow University of Technology, Cracow, Poland

<sup>b</sup>Department of Chemistry, Marine Bio process Research Center, Pukyong National University, Busan, South Korea

<sup>c</sup>Department of Chemical Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training (PAAET),

Shuwaikh, Kuwait

<sup>d</sup>Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan <sup>e</sup>Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran <sup>f</sup>Cracow University of Technology, Department of Polymer Chemistry and Technology, Cracow, Poland Received 24 October 2015; accepted 8 July 2016

#### Abstract

It is becoming progressively more understandable that sensitivity and versatility of magnetic biosensors provides unique platform for high performance diagnostics in clinical settings. Confluence of information suggested that magnetic biosensors required well-tailored magnetic particles as probes for detection that generate large and specific biological signal with minimum possible nonspecific binding. However, there are visible knowledge gaps in our understanding of the strategies to overcome existing challenges related to even smaller size of intracellular targets and lower signal-to-noise ratio than that in whole-cell studies, therefore tool designing and development for intracellular measurement and manipulation is problematic. In this review we describe magnetic nanoparticles, synthesis and sensing principles of magnetic nanoparticles as well as surface functionalization and modification and finally magnetic nanoparticles for medical diagnostics. This review gathers important and up-to-date information and may help to develop the method of obtaining magnetic materials especially for medical application.

© 2016 Published by Elsevier Inc.

Key words: Magnetic nanoparticles; Synthesis; Sensing principles of magnetic nanoparticles; Surface functionalization and modification; Magnetic nanoparticles for medical diagnostics

25 26

27

28

29

30

31

32 33

34

Biosensors comprise a number of different components among which the most important part constitutes magnetic particles. Recently, Koh and Josephson 1 reported that, "magnetic nanoparticles constitute a significant replacements of commonly available labels in biosensing because of their magnetic properties not present in biological systems". The implication of magnetic particles in biosensors means that it is important to have a better understanding of the properties of magnetic particles. Recently, great attention has been devoted to syntheses of various magnetic

nanoparticles due to their widespread applications in many fields 35 such as biomedicine, biotechnology, materials science and 36 environmental areas.<sup>2,3</sup> The synthesis of monodispersed and 37 shape controlled nanoparticles is significant because the properties 38 of the nanostructures depend strictly on their dimensions. 39 Moreover, synthesis of nanoparticles focused in particular on 40 formation of the proper dimensions is crucial to determine 41 physicochemical properties of nanocrystals. The magnetic nano- 42 particles attain their particular properties when their size decreases 43 reaching the value below critical dimensions. The low dimensional 44 structures are characterized by an enhanced magnetic moment and 45 thus exhibit properties similar to paramagnetic structure, able to 46 respond immediately to magnetic field applied. Such properties 47 result in wide applications of superparamagnetic NPs in 48 biomedicine due to their properties which are able not to form 49 the aggregates at ambient temperature. 4 It is well recognized that 50 therapy based on application of magnetic nanoparticles seems to 51

E-mail addresses: asobczak@chemia.pk.edu.pl (A. Sobczak-Kupiec), venkatjchem@pknu.ac.kr (J. Venkate), DrAlHathall@yahoo.com (A. AlHathal), ammadfarooqi@rlmclahore.com (A. Farooqi), hosseini\_sh44@yahoo.com (S.H. Hosseini), btyliszczak@chemia.com (B. Tyliszczak).

 $http://dx.doi.org/10.1016/j.nano.2016.07.003\\ 1549-9634/ © 2016 Published by Elsevier Inc.$ 

<sup>\*</sup>Corresponding author.

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

91

92

93

94

95

96

97

98

100

101

102

103

104

minimize side effects of therapy in comparison with conventional drug delivery treatments such as radiation, chemotherapy or immunotherapy. 5-9 In turn, magnetic hyperthermia is another experimental method of tumors treatment, based on the heat generation by the magnetic nanoparticles under the alternating magnetic field. 4,10-12 Notably, hyperthermia utilized alone to treat the cancer cells is not sufficient enough, thus it must be followed by additional therapy such as irradiation or chemotherapy. 13-15 Recently ferrofluids consisting of superparamagnetic or ferrimagnetic particles of Fe<sub>3</sub>O<sub>4</sub> or γ-Fe<sub>2</sub>O<sub>3</sub> have been widely utilized for hyperthermia applications. 14,16-18 Magnetic nanoparticles of various compositions and phases such as oxides (Fe<sub>3</sub>O<sub>4</sub>, y-Fe<sub>2</sub>O<sub>3</sub>), pure metals (Fe, Co) and ferromagnets (MgFe<sub>2</sub>O<sub>4</sub>, MnFe<sub>2</sub>O<sub>4</sub>) have been described.  $^{3,4,19-22}$  Great attention has been devoted to develop synthetic routes that led to the formation of well monodispersed and shape controlled magnetic nanoparticles.<sup>4</sup> Nowadays, numerous chemical and green synthesis methods such as: co-precipitation, <sup>23</sup>, <sup>24</sup> thermal decomposition, <sup>25</sup> microemulsions, <sup>26</sup>, <sup>27</sup> hydrothermal synthesis, <sup>28</sup> flame spray pyrolysis, <sup>29</sup> and green approaches <sup>30</sup> can be employed to attain magnetic nanoparticles.

#### Magnetic nanoparticles

To understand a behavior of magnetic particles it is necessary to determine their physicochemical parameters such as size, shape and magnetic properties. Three types of magnetic particles can be distinguished and they are as follows: oxides, metallic metals and alloys. They exhibit various magnetic properties. The oxides tended to possess antiferromagnetic or fluctuating magnetic properties. Metals are magnetic, however, the nature of their magnetic properties depends on size and morphology of their particles. Alloys on the other hand tend to have characteristics that are a combination of the magnetic properties of the metals they are composed of.

#### Oxides

The first type of magnetic particles that needs to be considered is oxides. He and Shi<sup>31</sup> stated that, "CoO in bulk is regarded as an insulating antiferromagnet with rocksalt cubic structure and Nell temperature of 298 K". There are two important magnetic particles that are in oxide form, FeO and Co<sub>3</sub>O<sub>4</sub>. One of the most important characteristics of Co<sub>3</sub>O<sub>4</sub> is that its magnetic properties are changing under different conditions. Gawali et al<sup>32</sup> found that, the vibration sample magnetometer (VSM) data of nanoparticles exhibit weak ferromagnetic properties with magnetic saturation of about 0.02 emu/g at the maximum magnetic field of 10 kOe, whereas material in bulk shows antiferromagnetic properties. When cobalt (II,III) oxide is exposed to a magnetic field it acts like a typical magnet and displays weak ferromagnetic behavior. However, a sample of Co<sub>3</sub>O<sub>4</sub> not exposed to magnetic field will display antiferromagnetic behavior. Also, CoO seems to possess variable magnetic properties. He and Shi<sup>31</sup> found that, the CoO nanoparticles possess anomalous magnetic properties, such as large movements, coercivities and loop shifts. These features determine the formation of spin compensation of random system in CoO. These findings are important because they suggest that the magnetic properties of CoO are highly variable. However, it must be noted that it did not 106 seem to develop the antiferromagnetic characteristics of Co<sub>3</sub>O<sub>4</sub>. 107 However, it seemed to display a greater range of magnetic 108 properties.

Metallic 110

There are a number of metallic particles that have magnetic 111 properties. Considering the properties of nickel (Ni), He et al<sup>33</sup> 112 explained that: "The transition metal such as nickel exhibits 113 particular magnetic and catalytic properties". This suggests that 114 Ni is a metal that have a unique magnetic and catalytic 115 properties. Size and organization mode of Ni particles affect 116 their magnetic properties. Deraz<sup>34</sup> found, that high value of 117 magnetization of the studied materials can be correlated with a 118 finite-size and surface effect. Particularly, the magnetization is 119 correlated with the microstructure of the interface (roughness and 120 crystallinity degree) that determines the configuration of the 121 spin. These findings suggest that morphology of the Ni, Ni 122 lattices and compounds that contain Ni particles determines their 123 magnetic properties. Various morphological structures of 124 materials containing Ni affect their behavior and even result in 125 changes of the surface area of Ni particles. Many reports state 126 that the size of the particle affects properties of Ni. According to 127 He et al<sup>33</sup> "...the Curie temperature, saturation magnetization, 128 and remanent magnetization increase whereas the coercivity 129 decreases monotonously with the increase of particle size". This 130 may suggest that the larger Ni may be characterized by higher 131 levels of saturation and remanent magnetization.

Alloys 133

Alloys are combinations of atoms of different metals. When 134 discussing the process of making Fe<sub>56</sub>Co<sub>7</sub>Ni<sub>7</sub>B<sub>20</sub>Nb<sub>10</sub> alloy Lesz 135 et al<sup>35</sup> explain that the Fe-based master alloy ingots can be 136 formed by melting the mixtures of Fe-B and Fe-Nb as starting 137 alloys and accordingly Fe, Co, or Ni are added metals under 138 protective atmosphere of inert gas such as argon. Such synthetic 139 route leads to the formation of Fe<sub>56</sub>Co<sub>7</sub>Ni<sub>7</sub>B<sub>20</sub>Nb<sub>10</sub> and a large 140 number alloys that exhibit the complex nature with wide range of 141 properties. The combination of metals in Fe<sub>56</sub>Co<sub>7</sub>Ni<sub>7</sub>B<sub>20</sub>Nb<sub>10</sub> 142 results in a combination of morphological, chemical and physical 143 characteristics of the material. Lesz et al<sup>35</sup> reported, that the 144 XRD and TEM structural and morphological analyses showed 145 that the ribbons obtained were amorphous. SEM micrographs 146 depicted some structural differences in the ribbons (smooth 147 fracture inside with few grains network on the surface freely 148 solidified). Consequently, the material exhibits various physical 149 and chemical properties at different locations. Also, the magnetic 150 properties of such alloy exhibit its heterogeneous nature. 151 Analyzing such structure Lutz et al<sup>36</sup> reported that Ni was 152 always superparamagnetic, while Co possessed superparamag- 153 netism only at low temperatures. Fe<sub>56</sub>Co<sub>7</sub>Ni<sub>7</sub>B<sub>20</sub>Nb<sub>10</sub> seems to 154 possess the magnetic properties derived from all the metals that 155 form such structure. The formed alloys possess soft magnetic 156 properties instead of the supermagnetic ones, observed in metals 157 such as Ni. This suggests that Fe<sub>56</sub>Co<sub>7</sub>Ni<sub>7</sub>B<sub>20</sub>Nb<sub>10</sub> as an alloy 158 has magnetic properties that are a combination of the magnetic 159 properties of the various metals that form such structure. In the 160

#### Download English Version:

# https://daneshyari.com/en/article/10435658

Download Persian Version:

https://daneshyari.com/article/10435658

Daneshyari.com