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a b s t r a c t

Theories of self-regulation describe motivation as a dynamic process of goal choice and goal striving. To
facilitate those processes, individuals learn about themselves and their environment, which is an internal
dynamic process. However, the precise nature of the relationship between these learning and motiva-
tional processes is not well specified. This article integrates formal models of learning, goal choice, and
goal striving using a single information processing structure found in self-regulatory models of motiva-
tion. Results from two published studies (DeShon & Rench, 2009; Schmidt & DeShon, 2007) validate the
model. In both cases, the integrated model accounts for findings that previous theories of self-regulation
could not explain. Discussion focuses on additional tests to validate the model and on the value of
incorporating formal models from the cognitive, learning, and motivational literatures to account for
behavior in complex settings and over time.

� 2013 Elsevier Inc. All rights reserved.

Introduction

Behavior is inherently complex and dynamic (Atkinson & Birch,
1970). One reason for this complexity is that organisms act to seek
or maintain numerous goals based on changing internal and exter-
nal conditions (Austin & Vancouver, 1996). Humans can also think
about the possible consequences – good and bad – of their actions
and the likelihood those consequences will materialize using their
understanding of the environment and themselves (Krantz &
Kunreuther, 2007). These capacities, their operation (i.e., their
dynamics), and their development are especially important when
considering motivation and behavior in work settings (Kanfer,
2012; Mitchell & James, 2001). Perhaps not surprisingly, develop-
ing a firm understanding of the mechanisms involved in these
processes is a challenge. Moreover, several scholars are concerned
that path models describing the relationships among variables and
the verbal explanations accompanying these models are insuffi-
cient for explicating and communicating theories of human
behavior (Busemeyer & Diederich, 2010; DeShon, 2012; Farrell &
Lewandowsky, 2010; Sun, 2008; Vancouver, 2012). To address this
concern, these scholars suggest using formal theories because they
can provide a more precise, transparent, and internally consistent
approach to theorizing. In particular, computational models of

subsystem processes are a particularly appropriate type of formal
theorizing because they can be simulated and provide predictions
of behavior over time (Adner, Polos, Ryall, & Sorenson, 2006).

Toward that end, Vancouver, Weinhardt, and Schmidt (2010)
recently presented a computational model of multiple-goal pursuit
that describes processes for thinking and acting over time. In this
model, they integrated theories of goal choice and goal striving,
which tend to be considered in separate, middle-range theories
(Klein, Austin, & Cooper, 2008). Moreover, the model was dynamic,
predicting how individuals respond to changes in the environment
brought on by their own actions as well as outside forces. The mul-
tiple-goal pursuit model (MGPM; Vancouver et al., 2010) repre-
sents an instantiation of a larger formal theory of self-regulation
presented by Vancouver (2008). That theory, which borrows
heavily from control theory perspectives of human behavior (e.g.,
Carver & Scheier, 1998; DeShon & Gillespie, 2005; Ford, 1992; Lord
& Levy, 1994; Powers, 1978), describes mechanisms alleged to
represent action, thinking, feeling, and learning processes. One
of the more remarkable elements of the theory is that the basic
mechanism for all these processes is the same. Specifically, at the
core of control theory is a weighted difference function driving a
negative feedback loop that arcs through the environment. This
weighted difference function represents a self-regulatory agent,
which is a very simple subsystem of the human system (Vancou-
ver, 2005). Via this conceptualization, the complexity of human
behavior arises from a combination of environmental dynamics
and, more importantly, the organization of multiple agents within
individuals.
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At this time, much scholarly work is needed to conceptualize
and verify the specific nature and organizations of agents that
might account for the variety of phenomena representing human
behavior. By developing a working simulation of goal choice and
goal striving, the MGPM represents an example of that kind of
scholarly work. However, that model was limited to the dynamics
of the environment and information (i.e., signals) flowing through
the individual. It did not address dynamic processes that might oc-
cur within the individual (e.g., processes that change what or how
individuals process signals). Such mechanisms would lead to the
relatively permanent change in individuals commonly referred to
as learning (Weiss, 1990).

Although applied psychologists often consider learning the
province of training and development, learning theories have also
long been of central interest to organizational behavior and moti-
vation researchers (Pinder, 2008). Indeed, learning is an important
process in human functioning that supports goal striving, goal
choice, and other self-regulatory processes (Sitzmann & Ely,
2011). For instance, expectancy and social cognition theories
(e.g., Bandura, 1986; Porter & Lawler, 1968; Vroom, 1964) assume
much of the variance in motivation is based on learned beliefs
about environmental contingencies, properties of the self (e.g., be-
liefs about capacity), and experience with outcomes. However, the
bulk of the research on learning within organizational science does
not address the sub-system processes that lead to learning, focus-
ing instead on a higher-level analysis. For example, research has
shown that error management training increases learning (Keith
& Frese, 2005). Yet, as Keith and Frese note, the specific processes
on which error management training capitalizes are less well
known. Here we offer an account of the subsystem processes that
lead to learning and intra-individual change.

Of course, formal models of learning mechanisms are common
in cognitive psychology (Young & Wasserman, 2005) and some
have appeared in organization science (Gibson, Fichman, & Plaut,
1997; March, 1996). We incorporate some of that knowledge here.
Integrating these mechanisms with modern conceptualizations of
goal choice and goal striving provide a more comprehensive theory
of motivation and self-regulation. Specifically, we want to explain
how an individual develops understandings of themselves and the
environment that are useful for self-regulation. For example,
individuals might create beliefs of the effectiveness of actions
(i.e., expectancies; self-efficacy) or future conditions, like when
professors learn to anticipate the kinds of questions they might re-
ceive on a set of material presented to a class or the reviews they
might get on a journal article and use those anticipated events to
adjust their presentations or articles. A better understanding and
integration of these dynamic processes is likely to facilitate the
development of interventions targeted at improving self-regula-
tion (Boekaerts, Maes, & Karoly, 2005; Vancouver & Day, 2005).
Moreover, if the learning subsystem is consistent with the goal-
choice and goal-striving subsystems, then the representation of
self-regulation will be conceptually parsimonious as well compre-
hensive (Vancouver, 2008).

Toward these ends, the goals of the current project are fourfold.
First, we seek to add understanding of individual change to the
MGPM, which at this time only includes behavior and environment
change. Second, we use that understanding to account for how
individuals might handle uncertainty in the environment as well
as learn helpful information about oneself that might be useful
for planning and making decisions. Third, we seek to maintain par-
simony by using the same core concept (i.e., the self-regulatory
agent) used in the MGPM. Finally, we accomplish the above for-
mally by using a computational representation of self-regulation.
In the following sections, we review the core concept in our ap-
proach and how it is used in the MGPM. We then review learning
concepts and some formal modeling concepts found in the

cognitive literature. Next, we explain how learning might support
multiple goal pursuit, incorporating the learning agents into the
MGPM. Finally, we assess the validity of the resulting model by
assessing its ability to account for the phenomena it purports to
explain.

A computational theory of self-regulation

In recent years, there has emerged an increasing desire to develop
a comprehensive, integrative theory of human work motivation and
behavior (Locke & Latham, 2004; Pinder, 2008; Steel & König, 2006).
Toward that end, self-regulation theories have shown promise (Die-
fendorff & Chandler, 2011; Lord, Diefendorff, Schmidt, & Hall, 2010).
Self-regulation theories highlight the agentic, goal-directed, quality
of behavior (Bandura, 1997; Vancouver & Day, 2005). A central
construct in self-regulation theories are goals, which are internally
represented desired states (Austin & Vancouver, 1996), and a central
process in these theories is discrepancy reduction (Vancouver,
2005).1 In particular, the individual maintains or achieves goals by
perceiving the states of variables and acting on discrepancies between
the perceived states and the desired states (i.e., goal). The actions af-
fect the states of interest, moving them toward the goals and thereby
reducing the discrepancies. Because the actions partially determine
the states of the variables and perceived states partially determine
the actions, the process reflects a feedback loop. Moreover, because
discrepancies signal actions that reduce the discrepancies, the sign
of the loop is negative. When operating properly, a negative feedback
loop keeps ‘‘regular’’ or ‘‘controls’’ the variable’s perceived state much
like a cruise control system in a car keeps regular or controls the speed
of the car as perceived by the car’s speedometer (Vancouver & Day,
2005). It is this process that accounts for the self-regulation or control
theory labels often used interchangeably in the literature (e.g., Carver
& Scheier, 1981, 1998).2

Fig. 1 represents the basic negative feedback, or discrepancy-
reducing, loop. The figure makes explicit the key functions needed
for self-regulation. Specifically, the input function translates sig-
nals external to the system (i.e., inputs) into a single signal used
by the system. Typically, this involves translating stimuli (s) indi-
cating the state of some variable (v) into a perception (p) of that
state. The perception is then available to other functions in the sys-
tem. Mathematically, we represent the input function as a product
of two vectors: a vector of inputs and a vector of weights for the
inputs. Multiplying the two vectors gives a scalar (i.e., single) value
much like a regression equation gives a single prediction based on
a set of weighted inputs. Typically, in self-regulation models, the
inputs are actually the outputs from other functions or nodes
(Powers, 1973). We should also note that connectionist (i.e., neural
network) models describe a similar arrangement, except that the
input function is called a node or processing unit (Gibson et al.,
1997). Given that the outputs from input functions are labeled
perceptions (p) in self-regulation models, Vancouver (2008)
represented the input function as follows:

p ¼ wsps; ð1Þ

1 Another central process in self-regulation theories is discrepancy production via
the adoption of goals that are beyond current conditions. Some suggest that
discrepancy production is a byproduct of discrepancy reduction (e.g., Scherbaum &
Vancouver, 2010); whereas, others suggest that discrepancy reduction is dependent
on the discrepancy production, making discrepancy production more interesting
(Bandura, 1997). In this paper, we merely assume discrepancies exist. We do not
address the possible processes that produce them.

2 The loop can also represent the motivation for one-time achievements, like
obtaining a Ph.D., where the regularity element is less obvious and control seems to
qualify the actions as opposed to the perceptions. This achievement type of context
appears to have created some semantic confusion (Vancouver, 2000; Vancouver &
Scherbaum, 2008).
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