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a  b  s  t  r  a  c  t

Model-based  analysis  of psychophysiological  signals  is  more  robust  to noise  – compared  to  standard
approaches  – and  may  furnish  better  predictors  of  psychological  state,  given  a physiological  signal.  We
have  previously  established  the  improved  predictive  validity  of  model-based  analysis  of  evoked  skin  con-
ductance  responses  to  brief  stimuli,  relative  to standard  approaches.  Here,  we  consider  some  technical
aspects  of  the  underlying  generative  model  and  demonstrate  further  improvements.  Most  importantly,
harvesting  between-subject  variability  in response  shape  can  improve  predictive  validity,  but  only  under
constraints  on  plausible  response  forms.  A  further  improvement  is achieved  by  conditioning  the  phys-
iological  signal  with  high  pass  filtering.  A  general  conclusion  is  that  precise  modelling  of  physiological
time series  does  not  markedly  increase  predictive  validity;  instead,  it appears  that  a  more  constrained
model  and  optimised  data features  provide  better  results,  probably  through  a suppression  of  physiological
fluctuation  that  is  not  caused  by the  experiment.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Recent interest in model-based analysis of skin conductance
responses (SCR) (Bach & Friston, 2013) is – in part – motivated
by the need to improve the temporal resolution of inference in
rapid event-related paradigms (Barry, Feldmann, Gordon, Cocker,
& Rennie, 1993). In model-based approaches, generative (forward)
models specify how underlying physiological or psychological
states generate observed data. Model inversion refers to estimating
these (hidden) states from data. It turns out that inversion of prob-
abilistic forward models has fundamental advantages, one of them
being a propensity to suppress the effect of measurement noise
(Bach, Flandin, Friston, & Dolan, 2009; Bach, Daunizeau, Friston,
& Dolan, 2010; Bach, Friston, & Dolan, 2010; Bach, Daunizeau,
Kuelzow, Friston, & Dolan, 2011). Statistical inference on the
hidden states is generally more powerful than statistical compar-
isons of observed data because the models are more informed
or constrained, leaving greater degrees of freedom in the data
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for efficient inference. Furthermore, the parameters of generative
models provide a quantitative and explicit description of assump-
tions implicit in operational approaches (Bach & Friston, 2013),
thus allowing for rigorous testing of those assumptions. Finally,
model-based approaches afford quantitative rather than qualita-
tive description of hidden, psychological processes.

Evoked skin conductance responses (eSCR) that follow a short
(less than second) stimulus can be analysed with general linear con-
volution models – similar to the convolution models widely used
in the analysis of functional magnetic resonance images (Friston,
Jezzard, & Turner, 1994). In order to estimate the amplitude of
evoked sympathetic nerve activity (SNA) from eSCR, we  proposed
such a convolution model (Bach et al., 2009). This model comprises
two parts: a peripheral model incorporating a (standard linear time
invariant) convolution operator, thought to be implemented by the
sudomotor nerve terminal and sweat gland; and a linear neural
model assuming infinitely short neural bursts immediately after
each stimulus. We  have shown that time invariance assumptions
for the peripheral system are largely met  (Bach, Flandin, Friston, &
Dolan, 2010), while non-linearities in the peripheral system may
occur but can easily be modelled within this framework – see
(Bach & Friston, 2013) for a discussion. The model is highly reg-
ularised by placing informative constraints on the form or shape
of the convolution kernel which models the peripheral response
function (RF). This enables one to estimate the mean evoked SNA
amplitude for each condition of an experimental design – even
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when observed eSCR overlap in time. This model was  designed
to optimise the predictive power of the estimates, rather than
to precisely reconstruct the observed time series. Indeed, when
subjects observe negative-arousing or neutral pictures, picture cat-
egory can be better predicted from SNA estimates than from SCR
peaks, an observation that speaks to its predictive validity (Bach
et al., 2009).

Model-based eSCR analysis, based on probabilistic inversion of
a general linear convolution models, is thus a potentially powerful
method. As with any method, however, the practical implemen-
tation makes certain technical assumptions that go beyond the
known biophysical properties of the system. Three points deserve
particular attention:

Firstly, the peripheral response model uses a canonical skin
conductance response function (SCRF) for all experiments and
individuals. Such a stereotypical response function is a strong
biophysical assumption and unsupported by observation. Indeed
in our own validation experiments, we observed large inter-
individual variability, accounting for up to 20% of overall response
variability (Bach, Flandin, et al., 2010). Therefore, we  added orthog-
onalised Taylor expansions to the SCRF to account for differences
between individuals and conditions, thus improving model fit
(Bach et al., 2009). Effectively, this enables the model to fit a sub-
ject specific RF in terms of a linear mixture of basis functions of
peristimulus time, where the basis set is generated by the Tay-
lor expansion. However, because the additional basis functions are
orthogonalised to the SCRF, they do not affect the estimation of
the parameter controlling the amplitude of the SCRF (Calhoun,
Stevens, Pearlson, & Kiehl, 2004; Hopfinger, Buchel, Holmes, &
Friston, 2000). Yet, this parameter is taken to estimate the SNA.
This means that additional basis functions improve data fit at the
within subject level but not comparisons of SNA at the between sub-
ject level. Hence, one might ask whether modelling an individual
response function (IRF) – rather than a canonical skin conductance
response function (SCRF) – improves predictive validity.

There are several ways to model subject specific IRF. First, the
SCRF together with the remaining basis functions can be used
to estimate a subject and condition specific IRF. That is, we  can
reconstruct the estimated eSCR, measure the peak amplitude (over
peristimulus time) and use this as an estimate of SNA amplitude,
instead of the canonical parameter estimate. Other regularised
basis sets also provide models of IRFs. An uninformed finite impulse
response (FIR) model was proposed in Bach et al. (2009) due to its
popularity in fMRI research. A cosine set also used in fMRI analysis
serves the same purpose. These basis sets typically have a larger
number of basis functions than basis sets built upon truncated Tay-
lor expansions. This means that although they are more flexible,
they require greater numbers of parameters to be estimated. In all
these approaches, separate IRFs are estimated for each condition
within one individual. A more informed approach is to assume the
form of the subject specific response function is the same for all
experimental conditions. We  have implemented this constraint by
extracting data from all conditions and fitting a response function
to the first principal component of the data. We  will refer to this
response function as the subject-specific response function (SRF).

A second issue is that skin conductance time series comprise
both phasic responses and a slowly drifting tonic component.
This drift is why many analysis schemes high pass filter the
signal (Boucsein, 2012), including contemporary model-based
approaches (Benedek & Kaernbach, 2010a, 2010b). This renders the
phasic responses finite and removes slow signal drifts which are dif-
ficult to model. In our implementation, we used a bidirectional first-
order Butterworth filter with time constant of 10 s (corresponding
to a cut off frequency of 0.0159 Hz) (Boucsein, 2012). A bidirec-
tional filter was chosen as it retains peak latencies. Because this
filter can slightly distort the shape of the signal, the regressors of the

general linear convolution model are subjected to the same filter.
The choice of the filter frequency is based on prior experience but
not on theoretical considerations. Therefore, one may  ask whether
there is an optimal filter that provides the best data features for
modelling. Generally speaking – when modelling biological time
series – data features that cannot be produced by a plausible for-
ward model are probably measurement noise or the product of
hidden processes not included explicitly in the model. This usually
means they can be discarded with impunity, thereby increasing the
signal-to-noise ratio (SNR) of the pre-processed data. Data condi-
tioning is then, effectively, a part of model inversion. The question
here is whether there is an optimal high pass filtering of skin con-
ductance timeseries that increases signal-to-noise. In case of a sig-
nal with precisely known RF, the matched filter theorem provides a
way of theoretically deriving a filter that maximises the SNR. In our
case, the true RF is not precisely known, and also varies between
individuals, such that we  sought to empirically determine the filter
characteristics that maximise predictive validity of SN estimates.

Finally, a linear neuronal model makes the strong assump-
tion that SNA evoked by a short stimulus occurs with constant
latency. We have previously shown that under this assumption
there is no evidence for time-varying responses in the peripheral
system (Bach, Flandin, et al., 2010). Here, we  revisit this assumption
and investigate whether modelling variations in neuronal latency
improves predictive validity, under the assumption of an invari-
ant peripheral response. Hence, we compare linear and non-linear
models. Two  particular non-linear models are considered. First, we
used our previous approach that uses Dynamic Causal Modelling
(DCM) (Bach, Daunizeau, et al., 2010) to obtain estimates of SNA
amplitude per trial by letting response amplitude and onset vary
on a trial-by-trial basis. Note that the neural model here is still
informed insofar as it specifies a certain response window. Some
authors propose uninformed neural models; in other words, they
assume that SNA can occur any time, but to only use SNA during
post-stimulus time windows for analysis (Benedek & Kaernbach,
2010a, 2010b). We sought to emulate this approach using DCM
for spontaneous fluctuations (Bach et al., 2011). Both approaches
yield a trial-by-trial estimate of SNA amplitude, which was  aver-
aged across experimental conditions for comparison with other
approaches.

In some circumstances – e.g. to use neural response estimates
as explanatory variables for analysis of independent experimental
data, such as fMRI, trial-by-trial estimates of SN amplitudes may
be required. Here, we sought to establish whether linear models
are sufficient for this purpose or whether the iterative procedures
required for non-linear models inherent in DCM are justified.

We have previously discussed how to benchmark methods that
estimate hidden variables from observed data (Bach & Friston,
2013). One way  is by making certain assumptions about what
causes the hidden variable to change. A consensus assumption in
the psychophysiology literature is that emotionally arousing events
increase sympathetic arousal, as engendered by negative and
positive arousing images. This has been demonstrated using oper-
ational approaches (Amrhein, Muhlberger, Pauli, & Wiedemann,
2004; Greenwald & Lang, 1989; Johnsen, Thayer, & Hugdahl, 1995;
Winton, Putnam, & Krauss, 1984). Here, we  assume that nega-
tive and positive arousing images would elicit greater sympathetic
arousal than neutral non-arousing images, and evaluated different
models in terms of their ability to distinguish between image types,
using just the observed SCR.

In summary, we  evaluated our method empirically, by com-
paring the predictive validity of different generative models. In
a first step, we compared a canonical response function against
various forms of an individualised response functions (IRF). Taking
the best model from this step, we then compared various filter
settings, non-linear methods, and the efficiency of trial-by-trial



Download English Version:

https://daneshyari.com/en/article/10454183

Download Persian Version:

https://daneshyari.com/article/10454183

Daneshyari.com

https://daneshyari.com/en/article/10454183
https://daneshyari.com/article/10454183
https://daneshyari.com

