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a b s t r a c t

In recent years, Bayesian learning models have been applied to an increasing variety of
domains. While such models have been criticized on theoretical grounds, the underlying
assumptions and predictions are rarely made concrete and tested experimentally. Here, I
use Frank and Tenenbaum’s (2011) Bayesian model of rule-learning as a case study to spell
out the underlying assumptions, and to confront them with the empirical results Frank and
Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-
learning is arguably well suited to rational Bayesian approaches, I show that their models
are neither psychologically plausible nor ideal observer models. Further, I show that their
central assumption is unfounded: humans do not always preferentially learn more specific
rules, but, at least in some situations, those rules that happen to be more salient. Even
when granting the unsupported assumptions, I show that all of the experiments modeled
by Frank and Tenenbaum (2011) either contradict their models, or have a large number of
more plausible interpretations. I provide an alternative account of the experimental data
based on simple psychological mechanisms, and show that this account both describes
the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian
models of cognitive phenomena, psychological phenomena are best understood by devel-
oping and testing psychological theories rather than models that can be fit to virtually any
data.

� 2013 Elsevier B.V. All rights reserved.

To recognize the taste of an apple, do we automatically
think about the tastes of oranges as well as all other foods
before we can know that we are eating an apple? Accord-
ing to a growing literature of Bayesian models, we make
inferences (e.g., the kind of food we are tasting) by consid-
ering all possible situations (e.g., tasting apples, oranges,
etc.) in addition to the situation we actually face, and then
decide which of these situations is the most likely one.
Bayesian inference models have been claimed to account
for an impressive variety of cognitive phenomena, includ-
ing visual grouping (Orbán, Fiser, Aslin, & Lengyel, 2008),
action understanding (Baker, Saxe, & Tenenbaum, 2009),

concept learning and categorization (Anderson, 1991;
Goodman, Tenenbaum, Feldman, & Griffiths, 2008), (induc-
tive) reasoning (Goodman, Ullman, & Tenenbaum, 2011;
Griffiths & Tenenbaum, 2009; Kemp, Perfors, & Tenenbaum,
2007; Kemp & Tenenbaum, 2009; Kemp, Tenenbaum,
Niyogi, & Griffiths, 2010; Lu, Yuille, Liljeholm, Cheng, &
Holyoak, 2008; Oaksford & Chater, 1994; TTglás et al.,
2011), judgment about real-world quantities (Griffiths &
Tenenbaum, 2006), word learning (Frank, Goodman, &
Tenenbaum, 2009; Xu & Tenenbaum, 2007), word segmen-
tation (Frank, Goldwater, Griffiths, & Tenenbaum, 2010),
and grammar acquisition (Perfors, Tenenbaum, &
Wonnacott, 2010; Perfors, Tenenbaum, & Regier, 2011).

Despite this growing literature, various authors have
criticized Bayesian approaches on theoretical grounds
(Altmann, 2010; Bowers & Davis, 2012; Fitelson, 1999;
Jones & Love, 2011; Marcus, 2010; Sakamoto, Jones, & Love,
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2008), and where Bayesian approaches have been explic-
itly compared to psychological models (e.g., in the case of
causal inference), the non-Bayesian approaches typically
explained the data better (e.g., Bes, Sloman, Lucas, &
Raufaste, 2012; Fernbach & Sloman, 2009). Here, I add to
this literature by taking a model in a domain that appears
particularly suitable for Bayesian learning—rule induction,
spell out its underlying assumptions as well as their pre-
dictions, and confront them with empirical data. Specifi-
cally, Frank and Tenenbaum (2011) recently proposed
that infants acquire rules in Bayesian, optimal ways. I will
compare this approach with an account of rule-learning
based on simple, psychologically grounded mechanisms,
and show that the latter approach provides a principled
explanation for the data.

1. Bayesian approaches to cognition: what is optimal?

On a conceptual level, Bayesian inference is straightfor-
ward. For example, if we encounter an individual with a
Red Sox cap, we conclude that she is more likely to come
from Boston than from, say, New York. However, to draw
this conclusion, we use our knowledge that the likelihood
of somebody wearing a Red Sox cap is higher in Boston
than in New York. Bayesian calculations allow us to turn
the likelihood that somebody who is in Boston wears a
Red Sox cap into the likelihood that somebody who wears
a Red Sox cap is from Boston. Moreover, such calculations
make ‘‘optimal’’ use of the available information.

Despite its conceptual simplicity, Bayesian inference is
tremendously useful in domains from statistics (e.g., Gill,
2008; O’Hagan, 1994) to evolutionary biology (e.g.,
Huelsenbeck, Ronquist, Nielsen, & Bollback, 2001; Pagel,
1994). Further, natural selection can be formulated as a
Bayesian optimization problem; as a result, Bayesian infer-
ence has given us important insights into the evolution of
our mental abilities. For example, some researchers have
shown that perceptual and cognitive mechanisms might
be well adapted to the statistics of our natural environ-
ment (e.g., Brunswik & Kamiya, 1953; Elder & Goldberg,
2002; Geisler & Diehl, 2002, 2003; Sigman, Cecchi, Gilbert,
& Magnasco, 2001; Weiss, Simoncelli, & Adelson, 2002).

However, when it comes to Bayesian models of learning
and cognition, environmental statistics are generally lack-
ing, forcing such models to be much more speculative
and hard to verify. This problem follows directly from
Bayesian claims to make ‘‘optimal’’ use of information in
the environment, and our lack of understanding of what
has been optimized over the course and under the con-
straints of evolution. In fact, not all behavioral traits are
optimal, but some might simply be accidents of how a spe-
cies has evolved. For example, in some monogamous ani-
mals such as Zebra finches, females seek extrapair
copulations although this behavior is maladaptive for fe-
males. However, extrapair mating behavior might be se-
lected for in females because it might be affected by an
allele that is shared with males, for whom siring extrapair
offspring is adaptive (Forstmeier, Martin, Bolund,
Schielzeth, & Kempenaers, 2011). Hence, the seemingly
maladaptive behavior might be due to the accidents of

how this trait is encoded genetically, suggesting that it is
extremely difficult to assess whether our cognitive
mechanisms are optimal and, if so, what they have been
optimized for.

2. An overview over Frank and Tenenbaum’s (2011)
models

Frank and Tenenbaum’s (2011) model is representative
of a large number of similar models, and is applied to a do-
main that is arguably well-suited to Bayesian approaches.
(Frank & Tenenbaum (2011) present in fact three different
models, but I will present the differences between these
models as they become relevant for the current purposes.)
They raise the question of how young infants learn rule-
like patterns based on repetitions. For example, syllable
triplets like ba–li–li follow an ABB pattern, where the last
syllable is repeated; syllable triplets like ba–ba–li follow
an AAB pattern, where the first syllable is repeated. Follow-
ing Marcus, Vijayan, Rao, and Vishton’s (1999) seminal
demonstration that young infants can learn such patterns,
repetition-patterns have become an important testing
ground for rule-learning, both in humans (e.g., Dawson &
Gerken, 2009; Endress, Dehaene-Lambertz, & Mehler,
2007; Endress, Scholl, & Mehler, 2005; Frank, Slemmer,
Marcus, & Johnson, 2009; Gerken, 2010; Gómez & Gerken,
1999; Kovács & Mehler, 2008, 2009a; Marcus, Fernandes, &
Johnson, 2007; Saffran, Pollak, Seibel, & Shkolnik, 2007)
and in nonhuman animals (e.g., Giurfa, Zhang, Jenett,
Menzel, & Srinivasan, 2001; Hauser & Glynn, 2009;
Murphy, Mondragon, & Murphy, 2008).

According to Frank and Tenenbaum’s (2011) model, in-
fants try to figure out the ‘‘best’’ rule describing the stimuli
they perceive. To do so, they come equipped with an innate
inventory of elementary rules, and check whether what
they hear (or see) is compatible with all of the rules in their
inventory. For example, if they hear AAB triplets, they
would not only think about AAB patterns, but also about
ABB patterns and all other patterns Frank and Tenenbaum
(2011) incorporated into their model, even if they never
hear any of these alternative patterns. To choose a rule,
Frank and Tenenbaum (2011) propose that infants assume
that the probability that a stimulus has been generated by
a rule is inversely proportional to the total number of stim-
uli that can be generated by the rule (Eqs. (2) and (3) in
their first model; the other models make similar assump-
tions); this strategy has been called the size principle by
Tenenbaum and Griffiths (2001).

Concretely, infants might encounter the triplets pu–li–li
and ba–pu–pu, both following an ABB pattern. Hence, they
encounter a total vocabulary of three syllables (i.e., pu, li
and ba). According to Frank and Tenenbaum (2011), infants
know (i) that the three syllables allow for a total of
3 � 3 � 3 = 27 triplets; (ii) that 6 of these triplets follow
an ABB pattern; and (iii) that 3 of these triplets follow an
AAA pattern (where all three syllables are identical), even
though infants have never heard any AAA triplets; infants
know the number of triplets that are compatible with
any other conceivable rule.

As a result, irrespective of any Bayesian computations,
infants know that AAA patterns are a priori more unlikely
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