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a b s t r a c t

A recent probabilistic model unified findings on sequential generalization (‘‘rule learning’’)
via independently-motivated principles of generalization (Frank and Tenenbaum, 2011).
Endress critiques this work, arguing that learners do not prefer more specific hypotheses
(a central assumption of the model), that ‘‘common-sense psychology’’ provides an ade-
quate explanation of rule learning, and that Bayesian models imply incorrect optimality
claims but can be fit to any pattern of data. Endress’s response raises useful points about
the importance of mechanistic explanation, but the specific critiques of our work are not
supported. More broadly, I argue that Endress undervalues the importance of formal mod-
els. Although probabilistic models must meet a high standard to be used as evidence for
optimality claims, they nevertheless provide a powerful framework for describing
cognition.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

How do you reverse engineer an alien computer? Figur-
ing out how it works requires moving back and forth be-
tween what you can learn about its individual parts and
broader hypotheses about its function and governing prin-
ciples. The general theory of computation leads to ques-
tions about the artifact’s inputs, outputs, and methods for
storing information (Hopcroft et al., 1979). But since com-
putational systems can store their state in processes as di-
verse as symbols on a tape or weights between neurons
(McCulloch and Pitts, 1943), a high-level understanding
of the device provides only general constraints on lower-
level hypotheses. In Marr’s (1982) terms, a computational
level understanding of the system needs to be integrated
with both a model of the system’s sub-components (the
algorithmic level) and, critically, an understanding of the
individual units of the system (the implementational level).
Each of these levels of representation contributes to the

ability to repair, duplicate, and extract general insights
from the artifact.

Reverse engineering the human mind requires the same
attention to multiple levels of abstraction. A wide range of
theorists have recognized that insights into the workings
of complex systems like perception, memory, and language
require an understanding of the general operating princi-
ples of the system (Anderson, 1990; Chomsky, 1995; Marr,
1982). Probabilistic models, which use tools from Bayesian
statistics and machine learning to describe such systems,
represent a promising framework for exploring high-level
descriptions of cognitive processes (Chater et al., 2006;
Tenenbaum et al., 2011).1

Although probabilistic models have grown tremen-
dously in popularity in recent years, they have also attracted
significant criticism (Bowers and Davis, 2012; Jones and
Love, 2011). Chief among these criticisms is that these mod-
els imply a claim that the mind itself is rational or even
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1 I use the terms ‘‘probabilistic’’ and ‘‘Bayesian’’ synonymously. I prefer
‘‘probabilistic,’’ as it better describes the key virtue of these models: that
they use probability as a single framework for integrating across widely
varying tasks, representations, and constraints.
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optimal. A claim of optimality entails that a particular cogni-
tive process provides the best possible solution relative to
some problem. The weaker claim of rationality suggests that
the process provides a logical, well-designed solution to a
problem, perhaps relative to limitations on cognitive re-
sources like memory or computation. These claims—espe-
cially the optimality claim—strike many authors as
unsupported and unfalsifiable, given that the particular
problem being solved and the assumptions of the model
solving it are rarely specified independently. Endress’s
(2013) article echoes these criticisms of optimality claims,
applying them to Frank and Tenenbaum’s (2011) models of
sequential rule learning (henceforth, ‘‘FT’’) and providing
additional theoretical and empirical arguments.

2. ‘‘Rule learning’’ and Endress’s critique

FT used probabilistic models to describe infants’ and
adults’ ability to learn sequential regularities in auditory
stimuli, a learning ability that may be linked to language
acquisition (Marcus et al., 2007; Marcus et al., 1999;
Peña et al., 2002). In ‘‘rule learning’’ paradigms (Marcus
et al., 1999), learners hear strings of syllables like ‘‘wo fe
fe,’’ instantiating simple regularities (e.g., in this case
ABB, or ‘‘last syllable repeats’’). They are then tested on
their ability to generalize these regularities to novel sylla-
ble strings. Experiments across a variety of ages, modali-
ties, and rule types provide a rich body of data that can
be explored for insights about how infants and adults make
such generalizations (Endress et al., 2005; Gerken, 2006;
Johnson et al., 2009; Marcus et al., 2007; Marcus et al.,
1999).

FT created three probabilistic models that made predic-
tions about learners’ performance across a wide range of
empirical results. All three of these models were based
on the assumption that learners prefer more specific
hypotheses (the ‘‘size principle’’ of Tenenbaum and Grif-
fiths, 2001), but they varied in their complexity. Model 1,
the simplest, made inferences directly from the input data,
but it always learned the correct rule perfectly. Model 2
added a single free parameter that controlled noise in
memory, allowing the model to produce quantitative pre-
dictions. Model 3 learned multiple rules. Despite the
apparent diversity of results in the literature, these simple
models sufficed to describe a wide range of empirical data.
Our explicit goal in FT was to provide ‘‘a baseline for future
work that can be modified and enriched’’ as the data
warranted.

Endress (2013) argues that our models do not provide a
good account of existing data on rule learning, however,
contesting both the general framework we used and the
specifics of our simulations. In this response I will focus
primarily on a set of critiques that have broad interest:

1. Learners prefer more salient rules rather than more
specific hypotheses.

2. ‘‘Common-sense psychology’’ provides an adequate
explanation of rule learning.

3. The use of free parameters is inappropriate in cognitive
modeling.

4. The use of probabilistic models implies an optimality
claim.

In Appendix A, I briefly summarize responses to criticisms
of specific simulations.

To summarize, I argue that Endress’s criticisms 1–3 are
not valid. Moving beyond a notion of ‘‘common sense’’ psy-
chology to theories that make graded and quantitative pre-
dictions, we will need to use statistical tools to understand
and evaluate the flexibility and specificity of our theories.
Nevertheless, Endress’s article raises useful questions
about how computational principles can be instantiated
in human minds and I am in agreement that there should
be a high standard for claims of optimality on the basis
of probabilistic modeling (indeed, FT did not make such a
claim).2

3. Do learners prefer more specific rules?

At the heart of Endress’s critique is the claim that ‘‘hu-
mans do not prefer more specific patterns.’’ This claim is
important because the size principle (Tenenbaum and Grif-
fiths, 2001; Xu and Tenenbaum, 2007b)—the principle that
hypotheses are weighted proportional to their specificity,
as a consequence of how those examples are sampled—
was the major explanatory assumption in FT’s models.

A large, independent body of evidence supports the use
of the size principle as a description of word learning and
categorization (Navarro et al., 2012; Tenenbaum and Grif-
fiths, 2001; Xu and Tenenbaum, 2007a, 2007b) and the
sensitivity of even young infants to the sampling processes
that result in the size principle (Denison et al., 2012;
Gweon et al., 2010; Kushnir et al., 2010; Xu and Garcia,
2008; Xu and Denison, 2009). To take just one example,
in the word learning tasks used by Xu and Tenenbaum
(2007b), adults and children saw either one or three exam-
ples of a category and were asked to make judgements that
revealed the specificity of their generalization. Presented
with one example, they showed gradient generalization,
but after seeing three examples, their judgments were con-
sistent with the most specific category that fit the data
they observed. This dataset and many others provide pow-
erful evidence for the importance of strong sampling and
the size principle, but are not discussed by Endress.

Instead, in support of the claim that humans do not pre-
fer more specific rules, Endress conducted an experiment
in which participants were familiarized with human
speech syllables in an AAB or ABB pattern. At test they were
asked to choose between pattern-incongruent human syl-
lables, or pattern-congruent strings instantiated in rhesus
monkey vocalizations, pitting consistency with the pattern
regularity (e.g., AAB vs. ABB) against consistency in the
modality of presentation (human speech vs. monkey

2 This response represents my personal views. There is substantial
variance in attitudes towards optimality claims in the probabilistic
modeling literature, and the attitudes of many researchers have evolved
with respect to this issue as more research has focused on ‘‘process level’’
explanations for cognitive phenomena (Chater et al., 2011; Griffiths et al.,
2012; Sanborn et al., 2010; Vul et al., 2009).
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