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a b s t r a c t

Exceptional accuracy and speed for option pricing are available via quadrature
(Andricopoulos, Widdicks, Duck, and Newton, 2003), extending into multiple dimensions
with complex path-dependency and early exercise (Andricopoulos, Widdicks, Newton,
and Duck, 2007). However, the exposition is incomplete, leaving many modelling
processes outside the Black-Scholes-Merton framework unattainable. We show how to
remove the remaining major block to universal application. Although this had appeared
highly problematic, the solution turns out to be conceptually simple and implementation
is straightforward (we provide code on the Journal of Financial Economics website at
http://jfe.rochester.edu). Crucially, the method retains its speed and flexibility across
complex combinations of option features but is now applicable across other underlying
processes.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Numerical techniques are widely required in derivatives
pricing, since it is often the case that no analytic equation
has been found for the valuation of a particular class of
option. Ideally, in place of numerical methods, we would
eventually have a suite of analytic solutions to cover all
derivatives pricing situations or, failing that, analytic
approximations of sufficient accuracy and utility for all
practical cases. For example, the work of Kristensen and
Mele (2011) is highly encouraging, yet we remain a long
way from generality along this route. Beyond the solutions
of Black and Scholes (1973) and Merton (1973) and a limited
set of other cases (generally those with no early exercise),

numerical techniques are frequently required. The available
numerical techniques are classified as trees (Cox, Ross, and
Rubinstein, 1979), solution of partial differential equations
usually by finite difference methods starting with the most
basic explicit method (Brennan and Schwartz, 1977), Monte
Carlo simulation (Boyle, 1977) and quadrature in the form of
the QUAD technique (Andricopoulos, Widdicks, Duck, and
Newton, 2003).

Each of these has been the subject of modification and
refinement, especially in relation to handling early exercise
with Monte Carlo (Longstaff and Schwartz, 2001) and path-
dependent features with the other techniques. Andricopoulos,
Widdicks, Newton, and Duck (2007) further developed QUAD
into a flexible, robust option pricing tool of wide applicability,
covering multiple dimensions, early exercise and heavy path-
dependence in complex combinations of exercise features.
QUAD is usually overwhelmingly fast, making it especially
useful in those cases in which computation with other
methods is inconveniently slow. However, it has largely been
limited to the Black-Scholes-Merton framework. Overcoming
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this limitation is the subject of our paper, which completes the
exposition of the method.

Just as the mathematics of trees, finite difference and
Monte Carlo approaches were all known and used in the
natural sciences and engineering long before their introduc-
tion into finance, basic quadrature goes back centuries. In
essence, it is the calculation of an area under a graph via an
approximation, splitting the area into a series of shapes, such
as rectangles, and summing their individual areas. Taking
smaller shapes produces more accurate results, converging on
the correct one. Well-known methods for doing this are the
Trapezium Rule, Simpson's Method and Gaussian quadrature,
and there are others. Each has differing properties and is more
or less easy to program, but of particular interest is the rate of
convergence to a correct solution as the number of calcula-
tions is increased in progressively finer approximations.

A key concept in the financial application of quadrature,
sometimes not appreciated, is that the mathematical quad-
rature component is merely a computational engine to be
chosen appropriately to fit into the wider calculations of the
particular options problem (Andricopoulos, Widdicks, Duck,
and Newton, 2003; Andricopoulos, Widdicks, Newton, and
Duck, 2007). Thus, even the very simple Trapezium Rule can
be adequate when elements in the wider calculations are less
refined. Similarly, Gaussian quadrature, though in itself a very
fast scheme, only provides useful extra speed over what may
be the best practical engine, Simpson's Method, where
unusually heavy calculational demands are made on the
quadrature component versus the rest of the computational
scheme. We shall return to the engine analogy later, whenwe
show how previously intractable problems in applying quad-
rature can be circumvented by including a second type of
numerical “engine”.

The foundationwork was presented in the Black-Scholes-
Merton framework but (as explained in Section 2.2) the
technique applies whenever the conditional probability
density function is known. This restricts the immediate
use of the technique to the Black-Scholes-Merton setup, to
Merton's jump-diffusion model (Merton, 1976) and to cer-
tain interest rate models such as those of Vasicek (1977) and
Cox, Ingersoll, and Ross (1985). Extension to Merton's
process is straightforward. The interest rate models are
more subtle, though Heap (2008) has successfully extended
the coverage to some (but not all) interest rate derivatives
with mean-reverting underlying processes.

A notable advance was made by O'Sullivan (2005), who
used the observation that many useful processes without a
well-known density function do, nonetheless, have a well
understood characteristic function. The density function,
as the inverse Fourier transform (FFT) of the characteristic
function, can be computed using fast Fourier transform
and the output may then be inserted in the QUAD scheme
to price derivatives. We refer to this method as FFT-QUAD.
O'Sullivan's method applies in particular to exponential
Levy processes. This made FFT-QUAD an important advance
but it does suffer several drawbacks. First, it requires two
integrations even for a derivative on a single underlying
process. This brings the complexity of the algorithm to at
least OðN2Þ, where N is the number of grid points used in
the numerical integrations; by comparison, the original
QUAD has a much better complexity of just O(N) for vanilla

options. Second, it does not cover every option type; for
example, the single-variable FFT-QUAD cannot be used to
price heavily path-dependent options in stochastic volatility
frameworks, since it does not keep track of the evolution of
the volatility process in moving from one observation point
to the next.

O'Sullivan's FFT-QUAD was improved considerably by
the CONV technique of Lord, Fang, Bervoets, and Oosterlee
(2007). We refer to this method as CONV-QUAD (Staunton,
2007). This excellent method uses the observation that the
fundamental pricing integral may usually be regarded as
the convolution (strictly speaking, the cross-correlation) of
the payoff and the density function. The beauty of this
insight is that the two integrals of FFT-QUAD may then be
replaced by two fast Fourier transforms. This brings the
complexity of the algorithm down to OðNlogðNÞÞ and, for
example, for Bermudan options (on M observation points),
the complexity remains at OðMN logðNÞÞ, which beats
even QUAD's OðMN2Þ. The CONV-QUAD method applies
to exponential Levy processes and, hence, in particular to
the Black-Scholes-Merton model, thereby improving on
the speed and accuracy of the plain QUAD technique of
Andricopoulos, Widdicks, Duck, and Newton (2003) and
Andricopoulos, Widdicks, Newton, and Duck (2007). Due
to its nearly linear speed, it clearly replaces plain QUAD as
the fastest method for a great many cases.

Useful as these developments were, the road to full
universality for underlying processes remains blocked. The
CONV method cannot be applied to, for example, the CEV
or the Heston processes with early exercise and, while
a single-variable characteristic function for the latter has
been used in O'Sullivan (2005) and Fang and Oosterlee
(2008) to price European options, a universal QUAD-style
treatment of these processes is still lacking.

In this paper we return to the methods of Andricopoulos,
Widdicks, Duck, and Newton (2003) and Andricopoulos,
Widdicks, Newton, and Duck (2007) and provide option
pricing techniques for the missing underlying processes. At
the core of this extension is the use of closed-form approx-
imations for the appropriate single- or two-variable transi-
tion density functions. By using these approximations we
can price complex combinations of option features precisely
as if we were working in the Black-Scholes-Merton frame-
work. Thus, we advance the range of the earlier papers
without losing their generality; the universality promised in
the title of the first paper (Andricopoulos, Widdicks, Duck,
and Newton, 2003) is finally arrived at.

2. Basics

Descriptions of the QUAD method can be found
in Andricopoulos, Widdicks, Duck, and Newton (2003),
Andricopoulos, Widdicks, Newton, and Duck (2007) and
Chen (2013). We also provide a detailed appendix on the
Journal of Financial Economics website (http://jfe.rochester.
edu).

2.1. QUAD in the Black-Scholes-Merton framework

Start with the well-known Black-Scholes-Merton par-
tial differential equation for an option with an underlying
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