Wishing to finance a recycling program? Willingness-to-pay study for enhancing municipal solid waste recycling in urban settlements in Thailand

Amornchai Challcharoenwattana a, b, Chanathip Pharino b, c, *

a International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
b Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
c Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

A R T I C L E I N F O
Article history:
Received 5 July 2015
Received in revised form 14 October 2015
Accepted 15 October 2015
Available online 24 October 2015

Keywords:
Interval regression
Urbanization
MSW separation
Recycling system
Willingness to pay
Thailand

A B S T R A C T
This study measured willingness to pay (WTP) for the addition of recycling services into existing municipal solid waste management in different types of settlements in Thailand. Questionnaire surveys were distributed in person to gather recycling-related socio-economic factors. The mean WTP was identified by the payment card method and analysed by interval regression. Analysis of results revealed that mean monthly WTPs increase, although not linearly, in the least urbanized areas (~0.73 USD), the urbanized areas (~1.96 USD), and the most urbanized areas (~1.65 USD). Common factors that influenced WTP were (a) higher level education and (b) a habit of separating recyclables. However, other socio-economic and recycling behaviour factors affected willingness to pay in each settlement differently. The mean WTP from each study site is consistently higher than the current rate for waste disposal, which signifies that average respondents from all study sites favoured recycling.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Despite drawbacks in the form of pollution and depreciation of land values, landfilling remains a prevalent method of disposal for municipal solid waste (MSW) (AIT & UNEP, 2010; Hoornweg & Bhada-Tata, 2012). The Municipal Solid Waste Management Authority is now struggling to commence new landfill projects and must even suspend existing landfill operations due to public demonstrations. Schemes to change MSW management (MSWM) to alternative disposal technologies, such as incineration, are often too costly and create significant budgetary burdens. The city of Harrisburg provides a good example of a city bankrupted by its incinerator project (Varghese, Bathon, & Sandler, 2011).

To expand the operating life of landfills and minimize environmental burdens on stakeholders, MSW separation prior to landfilling has been recommended under the principle of the “3Rs”—Reduce, Reuse, and Recycle. However, many towns’ administrations struggle to incorporate a recycling system into their MSW management systems, citing a deficit of investment, lack of participation, and insufficient technical support as their primary reasons (Ezebilo, 2013). Alternatively, pricing the disposal of MSW using a “Pay as You Throw” (PAYT) scheme is often employed to incentivize a reduction of disposed MSW and to promote separations of recyclables in many towns with good track records (Gellynck & Verhelst, 2007; Hong, 1999; Reschovsky & Stone, 1994).

Despite clear benefits of PAYT for reducing the overall burden of public finance, many cities still opt to maintain the status quo by absorbing the cost of MSW services using the justification that households may turn to illegal dumping and create adverse health and sanitation situations. Another potential cause of slow adoption of system improvements is the fear of political backlash from increasing MSWM fees despite the city managers’ awareness of the long-term benefits. Contrary to popular belief, outcomes from many contingent valuation surveys have indicated that
respondents often understand and express additional willingness to pay if MSW services are improved (Blaine, Lichtkoppler, Jones, & Zondag, 2005; Palatnik, Ayalon, & Shechter, 2005).

Nevertheless, MSWM fees must be set at an appropriate level. When the fees are too high, residents are more likely to engage in illegal dumping or refuse to subscribe to the MSWM system (US EPA, 2004). If the fee is too low, recycling rates may decrease because MSW generators may opt to pay the fees to continue their existing practice of not recycle, and they may view the fee as a “reparation fee for not recycling.” Uri Gneezy and Aldo Rustichini (2000) indicated that penalties that are too lenient can encourage behaviour that they were intended to curb.

1.1. Background of MSWM in Thailand and Thai MSWM financing problems

In 2012, Thailand’s annual generated MSW was 24.73 million tons but only 44.92% was properly managed or recycled, according to Thailand’s Pollution Control Department (PCD, 2012). According to Statistics of MSWM Methods in Thailand, 97.63% of the 2,490 MSW sites in Thailand use land-burying methods, i.e., landfilling and open dumping (ThailPublica, 2014). The average daily MSW generation rates in urban settlements are also increasing. The smallest settlement type (unchartered townships with registered populations less than 5,000) is estimated to produce MSW at a rate of 0.91 kg/capita. The most basic type of municipality is called Thumbon municipality, defined by numbers of registered population higher than 5,000 and approved by Ministry of Interior, is estimated to produce MSW at a rate of 1.02 kg/capita. The more urbanized type of municipality is called Muang municipality, defined by number of registered population higher than 10,000 and approved by Ministry of Interior, is estimated to produce MSW at a rate of 1.15 kg/capita. The most urbanized type of municipality is called Nakorn municipality, defined by number of registered population higher than 50,000 and approved by Ministry of Interior, is estimated to produce MSW at a rate of 1.89 kg/capita (PCD, 2013).

Complex and ambiguous regulations in Thailand are a burden on public services, i.e., river management (Loomis, Kent, Strange, Fausch, & Covich, 2000), air quality improvement (Wang & Whittington, 2003), climate change mitigation (Choi, 2014), and improvement of MSWM (Aadland & Caplan, 1999; Dunn, 2012; Kinnaman, 2000).

1.2. Contingent valuation and underlying econometric analysis

Contingent valuation (CV) is a technique used for gauging how a population of interest values goods and services in terms of willingness to pay (WTP) or willingness to accept (WTA) (Arrow et al., 1993; Cawley, 2008). Of the two, WTP has become more popular because values as reported tend to be more conservative than those of WTA (He & Asami, 2014; Horowitz & McConnell, 2002). The CV technique gained acceptance when the National Oceanic and Atmospheric Administration (NOAA) used the technique to evaluate the public’s willingness to pay to prevent environmental and ecological damages similar to the Exxon Valdez oil spill case (Carson et al., 2003). CV is also used in other non-market valuations to gauge the public’s WTP for improvement or introduction of public services, i.e., river management (Loomis, Kent, Strange, Fausch, & Covich, 2000), air quality improvement (Wang & Whittington, 2003), climate change mitigation (Choi, 2014), and improvement of MSWM (Aadland & Caplan, 1999; Dunn, 2012; Kinnaman, 2000).

Relationships between WTP, incomes, socio-economic factors, and recycling behaviours can be demonstrated using the random utility theory. As adapted from Wang and Whittington (2003), in a situation where no MSW service (V_0) exists, the utility can be explained as:

\[V_0 = V(Y, P, E_0, Z, \varepsilon_1) \]

where \(Y \) is incomes, \(P \) is a price vector, \(E_0 \) is an environmental status of lacking MSWM services, \(Z \) is the observed socio-economic, perception, knowledge toward the issue and \(\varepsilon_1 \) is a group of factors that are not reflected in \(Y, P, E_0, Z \).

If a MSWM service is offered, an individual is willing to pay up to the amount of X monetary unit (WTP_x) for the service and the environmental status changes from \(E_0 \) to \(E_1 \). The utility for this situation (V_1) can be expressed as:

\[V_1 = V(Y-(WTP_x), P, E_1, Z, \varepsilon_1) \]

Solving for WTP results in:

\[V_0 \rightarrow V_1 \text{ and } WTP = WTP(Y, P, E_0, E_1, Z, \varepsilon_1) = E[WTP] + \varepsilon_2 \]

where \(E[\cdot] \) is an expectation transformation, and \(\varepsilon_2 \) is the random term of the individual’s WTP for MSW service in which \(\varepsilon_2 \) values are unique for each individual.

Among popular methods of soliciting WTP (i.e., dichotomous choice, open-ended estimation, etc.), this study employed the payment card (PC) method because PC tends to provide more.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Least urbanized municipalities</th>
<th>Urbanized municipalities</th>
<th>Most urbanized municipalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thumbon Lamthouth municipality, Nakorn Rajsrima</td>
<td>Thumbon Krui Buri Municipality, Prachub Khiri Khlan</td>
<td>Muang Nong pre municipality, Chonburi</td>
</tr>
<tr>
<td>Registered populations</td>
<td>5,950</td>
<td>9,830</td>
<td>61,198</td>
</tr>
<tr>
<td>% MSW’s related expense from overall expenses</td>
<td>0.57%</td>
<td>3.48%</td>
<td>13.88%</td>
</tr>
<tr>
<td>% fee covered in MSW expense</td>
<td>36.36%</td>
<td>10.47%</td>
<td>11.48%</td>
</tr>
<tr>
<td>Expense for MSW per head (USD)</td>
<td>0.91</td>
<td>5.69</td>
<td>18.06</td>
</tr>
</tbody>
</table>

Table 1: Selected 2014 municipal budget reports in Thailand.
دانلود مقاله

http://daneshyari.com/article/1047655

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات