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a b s t r a c t

We investigate an epidemic spreading process by means of a computational simulation
on the Apollonian network, which is simultaneously small-world, scale-free, Euclidean,
space-filling andmatching graphs. An analysis of the critical behavior of the Contact Process
(CP) is presented using a Monte Carlo method. Our model shows a competition between
healthy and infected individuals in a given biological or technological system, leading
to a continuous phase transition between the active and inactive states, whose critical
exponents β/ν⊥ and 1/ν⊥ are calculated. Employing a finite-size scaling analysis, we
show that the continuous phase transition belongs to the mean-field directed percolation
universality class in regular lattices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, important steps toward a better understanding of critical phenomena in complex networks have
been made [1,2]. In particular, the research community has devoted a great deal of attention to the study of the dynamical
processes on these networks [3–5], which can have important implications in the study of real processes such as social
systems [6], virus spreading in computers, and traffic in technological information systems [7,8], as well as the spread of
epidemic diseases [9,10]. For the latter process, the contamination of vertices on the complex network, the existence of non-
equilibriumphase transitions, and the identification of the type of transition, are the tools to study the spreading of epidemic
processes. From the theoretical point of view, despite its simplicity, the mean-field (MF) model is the usual technique used
to study such networks’ behavior [11,12], since it describes qualitatively well most of the phase transitions, particularly the
critical behavior of complex networks which belong to the MF universality class [13].

Complex networks describe many systems in nature and society [14,15], and most of them share three features: power-
law degree distribution, small average path length, and high clustering coefficient. Regarding their topology, they are usually
divided into three large classes [16]: randomnetworks,where all the nodes are randomly connected [17], scale-free network,
presenting connected graph with the property that the number of links originating from a given node exhibits a power law
distribution [18], and the small-world one, showing structures where the diameter or the average shortest path ℓ increases
logarithmically with the system size N (number of nodes) [19].

Among the complex networks, the Apollonian network is a special one since it belongs to a particular class of determin-
istic networks that are scale-free, display small-world effect, can be embedded in a Euclidean lattice, and show space-filling
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Fig. 1. (colour online) Building process of the Apollonian networks.

as well as matching graph properties [20,21]. Previous studies have already beenmade about their topological features, and
their effect on the behavior of a variety of transport and growthmodels [22–27]. In particular, the nature of the one-electron
eigenstates (energy spectrum) of a free-electron gas in the Apollonian network has been recently investigated presenting
several unique features such as delta-like singularities, gaps and minibands, as well as localized, extended and critical elec-
tronic states [28].

In this work we focus our attention on the properties of the Contact Process (CP) model in the Apollonian network. The
Contact Processmodelwas introduced byHarris in 1974 [29] and is one of themost investigated epidemic spreadingmodels.
According to the MF model, the critical behavior of the system depends on the distribution degree γ . More precisely, there
are three regions; for γ > 3 the critical exponents are β = 1 and ν⊥ = 2; for 2 < γ < 3, we have β = 1/(γ − 2) and
ν⊥ = (γ −1)/(γ −2); and for γ < 2 there is no transition for a finiteλ [30,3,13,31]. A variation of the CPmodel, the so-called
susceptible–infected–susceptible (SIS)model is alsowidely applied in complex networks [32,33]. The CPmodel is defined as
a d-dimensional lattice Ld, where each site is identified as individuals in two states: healthy (inactive) and infected (active).
The dynamics of the interaction between the individuals obeys local Markovian rules. In this context, healthy individuals
become infected at a rate that depends on the number of infected neighbors, while the infected one becomes healthy at a rate
λ, with the density of infected individuals ρD going to zero for high values of λ. On the other hand, it evolves to a stationary
state with a finite density of infected individuals for low values of λ, with a critical λc separating the active and inactive
regimes. This model, therefore, exhibits a continuous phase transition between a stationary active state and one absorbing
state (ρD = 0). Numerical simulations have shown that this transition between active and inactive regimes belongs to the
directed percolation universality class [34].

In this work, we perform an extensive numerical simulation of the contact process on the Apollonian network, aiming to
verify the type of phase transition and to estimate the critical properties of the network. We also verified how the topology
of this network affects the critical properties, looking for which universality class this system belongs to.

This paper is organized as follows. In Section 2 we present the Apollonian network model according to the current
literature. In Section 3 we consider the numerical simulations of the CP model, as well as the discussion of the numerical
results. Section 4 is devoted to some concluding remarks.

2. Apollonian networks

The Apollonian network is a deterministic version of the problem of space-filling packing of spheres. In the two-
dimensional version, we consider the problem of a space-filling packing of disks according to the ancient Greek
mathematician Apollonius of Perga Ref. [35]. Three disks touch each other and the circle between them is filled by another
disk that touches all the previous three, forming much smaller circles that are then filled again and so on (see Fig. 1).
Connecting the centers of the touching disks by lines, one obtains a network which gives a triangulation that physically
corresponds to the force network of a dense granular packing. This network resembles the graphs introduced by Dodds
Ref. [36] for the case of random packings, and has also been used in the context of porous media [37].

The above described Apollonian network has the following properties:

(i) It is scale-free. The cumulative of the degree distribution, P(k) =


k′≥k m(k′, n)/Nn, exhibits a power-law distribution
P(k) ∝ k1−γ with the exponent γ = 1 + (ln)(3)/(ln)(2) ≈ 2.585 characterizing the stationary distribution P(k). Here
k is the vertex degree (connectivity), and Nn = 3 + (3n+1

− 1)/2 is the number of vertices at each generation n;
(ii) It displays small-world effect. The average length of the shortest path ℓ, between two vertices, grows slower than any

positive power of the system sizeN . In fact, the Apollonian network behaves like a randomgraph, i.e., ℓ ∝ [ln(N)]3/4, and
has a clustering coefficient C = 0.828 in the limit of largeN . For instance, the clustering coefficient for the collaborations



Download English Version:

https://daneshyari.com/en/article/10480611

Download Persian Version:

https://daneshyari.com/article/10480611

Daneshyari.com

https://daneshyari.com/en/article/10480611
https://daneshyari.com/article/10480611
https://daneshyari.com

